Новый российский космический двигатель. Прямое преобразование ядерного тепла в электричество. Конструкции ядерных ракетных двигателей

© Оксана Викторова/Коллаж/Ridus

Заявление, сделанное Владимиром Путиным в ходе своего послания Федеральному собранию, о наличии в России крылатой ракеты, приводимой в движение двигателем на ядерной тяге, вызвало бурный ажиотаж в обществе и СМИ. В то же время о том, что представляет собой такой двигатель, и о возможностях его использования до последнего времени было известно достаточно мало, как широкой общественности, так и специалистам.

«Ридус» попытался разобраться, о каком техническом устройстве мог вести речь президент и в чем состоит его уникальность.

Учитывая, что презентация в Манеже делалась не на аудиторию технических специалистов, а для «общей» публики, ее авторы могли допустить определенную подмену понятий, не исключает заместитель директора Института ядерной физики и технологий НИЯУ МИФИ Георгий Тихомиров.

«То, что говорил и показывал президент, специалисты называют компактными силовыми установками, эксперименты с которыми проводились изначально в авиации, а затем при освоении дальнего космоса. Это были попытки решить неразрешимую проблему достаточного запаса топлива при перелетах на неограниченные дальности. В этом смысле презентация совершенно корректна: наличие такого двигателя обеспечивает энергоснабжение систем ракеты или любого иного аппарата сколь угодно долгое время», - сказал он «Ридусу».

Работы с таким двигателем в СССР начались ровно 60 лет назад под руководством академиков М. Келдыша, И. Курчатова и С. Королева. В те же самые годы аналогичные работы велись в США, но были свернуты в 1965 году. В СССР работы продолжались еще около десятилетия, прежде чем тоже были признаны неактуальными. Возможно, поэтому в Вашингтоне не сильно передернули, заявив, что не удивлены презентацией российской ракеты.

В России идея ядерного двигателя никогда не умирала - в частности, с 2009 года ведется практическая разработка такой установки. Судя по срокам, заявленные президентом испытания вполне укладываются именно в этот совместный проект Роскосмоса и Росатома - поскольку разработчики и планировали провести полевые испытания двигателя в 2018 году. Возможно, в связи с политическими причинами они чуть поднатужились и сдвинули сроки «влево».

«Технологически это устроено так, что ядерный энергоблок нагревает газовый теплоноситель. И этот разогретый газ либо вращает турбину, либо создает реактивную тягу напрямую. Определенное лукавство в презентации ракеты, которую мы услышали, состоит в том, что дальность ее полета все-таки не бесконечна: она ограничена объемом рабочего тела - жидкого газа, который физически можно закачать в баки ракеты», - говорит специалист.

При этом у космической ракеты и крылатой ракеты принципиально разные схемы управления полетом, поскольку у них разные задачи. Первая летит в безвоздушном пространстве, ей не надо маневрировать, - достаточно придать ей первоначальный импульс, и далее она движется по расчетной баллистической траектории.

Крылатая же ракета, наоборот, должна непрерывно менять траекторию, для чего у нее должен быть достаточный запас топлива, чтобы создавать импульсы. Будет ли это топливо воспламеняться ядерной энергоустановкой или традиционной - в данном случае не принципиально. Принципиален только запас этого топлива, подчеркивает Тихомиров.

«Смысл ядерной установки при полетах в дальний космос - это наличие на борту источника энергии для питания систем аппарата неограниченно долгое время. При этом может быть не только ядерный реактор, но и радиоизотопные термоэлектрические генераторы. А смысл такой установки на ракете, полет которой не будет продолжаться долее нескольких десятков минут, мне пока не вполне ясен», - признаётся физик.

Доклад в Манеже лишь на пару недель запоздал по сравнению с заявлением NASA , сделанным 15 февраля, о том, что американцы возобновляют научно-исследовательские работы по ядерному ракетному двигателю, заброшенные ими полвека назад.

Кстати, в ноябре 2017 года уже и Китайская корпорация аэрокосмической науки и техники (CASC) сообщила, что до 2045 года в КНР будет создан космический корабль на ядерном двигателе. Поэтому сегодня можно смело говорить о том, что мировая ядерно-двигательная гонка началась.

Ракетные двигатели на жидком топливе дали человеку возможность выйти в космос — на околоземные орбиты. Однако подобные ракеты сжигают 99% топлива за первые несколько минут полёта. Остатка топлива может не хватить для путешествия на другие планеты, да и скорость будет настолько малой, что вояж займёт десятки или сотни лет. Решить проблему могут ядерные двигатели. Как? Будем разбираться вместе.

Принцип работы реактивного двигателя очень прост: он переводит топливо в кинетическую энергию струи (закон сохранения энергии), за счёт направления этой струи ракета движется в пространстве (закон сохранения импульса). Важно понимать, что мы не можем разогнать ракету или самолёт до скорости большей, чем скорость истечения топлива — раскалённого газа, выбрасываемого назад.

Космический аппарат New Horizons

Что же отличает эффективный двигатель от неудачного или устаревшего аналога? Прежде всего то, сколько топлива потребуется двигателю, чтобы разогнать ракету до нужной скорости. Этот важнейший параметр ракетного двигателя называется удельный импульс , который определяется как отношение общего импульса к расходу топлива: чем больше этот показатель, тем эффективнее ракетный двигатель. Если ракета практически целиком состоит из топлива (это означает, что в ней нет места для полезного груза, предельный случай), удельный импульс можно считать равным скорости истечения топлива (рабочего тела) из ракетного сопла. Запуск ракеты — крайне дорогостоящее мероприятие, учитывается каждый грамм не только полезного груза, но и топлива, которое тоже весит и занимает место. Поэтому инженеры подбирают всё более и более активное горючее, единица которой давала бы максимальную отдачу, увеличивая удельный импульс.

Подавляющее большинство ракет в истории и современности было оборудовано двигателями, использующими химическую реакцию горения (окисления) топлива.

Они позволили достичь Луны, Венеры, Марса и даже планет дальнего пояса — Юпитера, Сатурна и Нептуна. Правда, космические экспедиции заняли месяцы и годы (автоматические станции Pioneer, Voyager, New Horizons и др.). Необходимо отметить, что все подобные ракеты расходуют значительную часть топлива для отрыва от Земли, и далее продолжают полёт по инерции с редкими моментами включения двигателя.

Космический аппарат Pioneer

Подобные двигатели подходят для вывода ракет на околоземную орбиту, но, чтобы её разогнать хотя бы до четверти скорости света, понадобится невероятное количество топлива (расчёты показывают, что нужно 103200 грамм топлива, при том, что масса нашей Галактики не более 1056 грамма). Очевидно, что для достижения ближайших планет, а тем более звёзд, нам необходимы достаточно большие скорости, обеспечить которые жидкотопливные ракеты не в состоянии.

​Газофазный ядерный двигатель

Дальний космос — дело совсем другое. Взять хотя бы Марс, «обжитый» фантастами вдоль и поперёк: он хорошо изучен и научно перспективен, а самое главное — близок как никто другой. Дело — за «космическим автобусом», который сможет доставить туда экипаж за разумное время, то есть, как можно быстрее. Но с межпланетным транспортом есть проблемы. Его сложно разогнать до нужной скорости, сохранив при этом приемлемые размеры и потратив разумное количество топлива.


RS-25 (Rocket System 25) — жидкостный ракетный двигатель компании Рокетдайн, США. Применялся на планере космической транспортной системы «Space Shuttle», на каждом из которых было установлено три таких двигателя. Более известен как двигатель SSME (англ. Space Shuttle Main Engine — главный двигатель космического челнока). Основными компонентами топлива являются жидкий кислород (окислитель) и водород (горючее). RS-25 использует схему закрытого цикла (с дожиганием генераторного газа).

Решением может быть «мирный атом», толкающий космические корабли. О создании лёгкого и компактного устройства, способного вывести на орбиту хотя бы самого себя, инженеры задумались ещё в конце 50‑х годов прошлого века. Главное отличие ядерных двигателей от ракет с двигателями внутреннего сгорания в том, что кинетическая энергия получается не за счёт сгорания топлива, а за счёт тепловой энергии распада радио­активных элементов. Давайте сравним эти подходы.

Из жидкостных двигателей выходит раскалённый «коктейль» выхлопных газов (закон сохранения импульса), образующихся при реакции топлива и окислителя (закон сохранения энергии). В большинстве случаев это комбинация кислорода и водорода (результат горения водорода — обычная вода). H2O обладает гораздо большей молярной массой, чем водород или гелий, поэтому её труднее разогнать, удельный импульс для подобного двигателя 4 500 м/с.

Наземные испытания NASA новой системы запуска космических ракет, 2016 год (штат Юта, США). Эти двигатели будут установлены на космический корабль Orion, на котором планируется миссия на Марс.

В ядерных двигателях предлагается использовать только водород и разгонять (разогревать) его за счёт энергии ядерного распада. Тем самым идёт экономия на окислителе (кислороде), что уже замечательно, но не всё. Так как у водорода относительно малая удельная масса, нам проще его разогнать до более высоких скоростей. Конечно, можно использовать и другие тепловосприимчивые газы (гелий, аргон, аммиак и метан), но все они не менее чем в два раза проигрывают водороду в самом главном — достижимом удельном импульсе (более 8 км/c).

Так стоит ли его терять? Выигрыш настолько велик, что инженеров не останавливает ни сложность конструкции и управления реактором, ни его большой вес, ни даже радиационная опасность. Тем более никто и не собирается стартовать с поверхности Земли — сборка таких кораблей будет вестись на орбите.

​«Летающий» реактор

Как работает ядерный двигатель? Реак­тор в космическом двигателе намного меньше и компактнее своих наземных аналогов, но все основные компоненты и механизмы управления принципиально те же. Реактор выступает в роли нагревателя, в который подаётся жидкий водород. Температуры в активной зоне достигают (и могут превышать) 3000 градусов. Затем разогретый газ выпускают через сопло.

Однако такие реакторы испускают вредные радиационные излучения. Для защиты экипажа и многочисленного электронного оборудования от радиации нужны основательные меры. Поэтому проекты межпланетных кораблей с атомным движком часто напоминают зонтик: двигатель располагается в экранированном отдельном блоке, соединённом с основным модулем длинной фермой или трубой.

«Камерой сгорания» ядерного двигателя служит активная зона реактора, в которой подаваемый под большим давлением водород нагревается до 3000 и более градусов. Этот предел определяется только жаропрочностью материалов реактора и свойствами топлива, хотя повышение температуры увеличивает удельный импульс.

Тепловыделяющие элементы — это жаропрочные ребристые (для повышения площади теплоотдачи) цилиндры-«стаканы», заполненные урановыми таблетками. Они «омываются» потоком газа, играющего роль и рабочего тела, и охладителя реактора. Вся конструкция изолирована бериллиевыми экранами-отражателями, не выпускающими опасное радиационное излучение наружу. Для управления выделением тепла рядом с экранами расположены специальные поворотные барабаны

Существует ряд перспективных конструкций ядерных ракетных двигателей, реализация которых ждёт своего часа. Ведь в основном они будут применяться в межпланетных путешествиях, которые, судя по всему, уже не за горами.

Проекты ядерных двигателей

Эти проекты были заморожены по разным причинам — недостаток денег, сложность конструкции или даже необходимость сборки и установки в открытом космосе.

«ОРИОН» (США, 1950–1960)

Проект пилотируемого ядерно-импульсного космического корабля («взрыволёт») для исследования межпланетного и межзвёздного ­пространства.

Принцип работы. Из двигателя корабля, в направлении противоположном полёту, выбрасывается ядерный заряд небольшого эквивалента и подрывается на сравнительно малой дистанции от корабля (до 100 м). Ударная сила отражается от массивной отражающей плиты в хвосте корабля, «толкая» его вперёд.

«ПРОМЕТЕЙ» (США, 2002–2005)

Проект космического агентства NASA по разработке ядерного двигателя для космических аппаратов.

Принцип работы. Двигатель космического корабля должен был состоять из ионизированных частиц, создающих тягу, и компактного ядерного реактора, обеспечивающего установку энергией. Ионный двигатель создаёт тягу порядка 60 грамм, но сможет работать постоянно. В конечном счёте, корабль постепенно сможет набрать огромную скорость — 50 км/сек, затратив минимальное количество энергии.

«ПЛУТОН» (США, 1957–1964)

Проект по разработке ядерного прямоточного воздушно-реактивного двигателя.

Принцип работы. Воздух через переднюю часть транспортного средства попадает в ядерный реактор, в котором нагревается. Горячий воздух расширяется, приобретает большую скорость и высвобождается через сопло, обеспечивая необходимую тягу.

NERVA (США, 1952–1972)

(англ. Nuclear Engine for Rocket Vehicle Application) — совместная программа Комиссии по атомной энергии США и NASA по созданию ядерного ракетного двигателя.

Принцип работы. Жидкий гидрогель подаётся в специальный отсек, в котором происходит его нагревание ядерным реактором. Горячий газ расширяется и высвобождается в сопле, создавая тягу.

Часто в общеобразовательных публикациях о космонавтике не различают разницу между ядерным ракетным двигателем (ЯРД) и ядерной ракетной электродвигательной установкой (ЯЭДУ). Однако под этими аббревиатурами скрывается не только разница в принципах преобразования ядерной энергии в силу тяги ракеты, но и весьма драматичная история развития космонавтики.

Драматизм истории состоит в том, что если бы остановленные главным образом по экономическим причинам исследования ЯДУ и ЯЭДУ как в СССР, так и в США продолжились, то полёты человека на марс давно бы уже стали обыденным делом.

Всё начиналось с атмосферных летательных аппаратов с прямоточным ядерным двигателем

Конструкторы в США и СССР рассматривали «дышащие» ядерные установки, способные втягивать забортный воздух и разогревать его до колоссальных температур. Вероятно, этот принцип образования тяги был заимствован от прямоточных воздушно-реактивных двигателей, только вместо ракетного топлива использовалась энергия деления атомных ядер диоксида урана 235.

В США такой двигатель разрабатывался в рамках проекта Pluto. Американцы сумели создать два прототипа нового двигателя - Tory-IIA и Tory-IIC, на которых даже производились включения реакторов. Мощность установки должна была составить 600 мегаватт.

Двигатели, разработанные в рамках проекта Pluto, планировалось устанавливать на крылатые ракеты, которые в 1950-х годах создавались под обозначением SLAM (Supersonic Low Altitude Missile, сверхзвуковая маловысотная ракета).

В США планировали построить ракету длинной 26,8 метра, диаметром три метра, и массой в 28 тонн. В корпусе ракеты должен был располагаться ядерный боезаряд, а также ядерная двигательная установка, имеющая длину 1,6 метра и диаметр 1,5 метра. На фоне других размеров установка выглядела весьма компактной, что и объясняет её прямоточный принцип работы.

Разработчики полагали, что, благодаря ядерному двигателю, дальность полета ракеты SLAM составит, по меньшей мере, 182 тысячи километров.

В 1964 году министерство обороны США проект закрыло. Официальной причиной послужило то, что в полете крылатая ракета с ядерным двигателем слишком сильно загрязняет все вокруг. Но на самом деле причина состояла в значительных затратах на обслуживание таких ракет, тем более к тому времени бурно развивалось ракетостроение на основе жидкостных реактивных ракетных двигателей, обслуживание которых было значительно дешевле.

СССР оставалась верной идеи создания ЯРД прямоточной конструкции значительно дольше, чем США, закрыв проект только в 1985 году . Но и результаты получились значительно весомее. Так, первый и единственный советский ядерный ракетный двигатель был разработан в конструкторском бюро «Химавтоматика», Воронеж. Это РД-0410 (Индекс ГРАУ - 11Б91, известен также как «Ирбит» и «ИР-100»).

В РД-0410 был применён гетерогенный реактор на тепловых нейтронах, замедлителем служил гидрид циркония, отражатели нейтронов - из бериллия, ядерное топливо - материал на основе карбидов урана и вольфрама, с обогащением по изотопу 235 около 80 %.

Конструкция включала в себя 37 тепловыделяющих сборок, покрытых теплоизоляцией, отделявшей их от замедлителя. Проектом предусматривалось, что поток водорода вначале проходил через отражатель и замедлитель, поддерживая их температуру на уровне комнатной, а затем поступал в активную зону, где охлаждал тепловыделяющие сборки, нагреваясь при этом до 3100 К. На стенде отражатель и замедлитель охлаждались отдельным потоком водорода.

Реактор прошёл значительную серию испытаний, но ни разу не испытывался на полную длительность работы. Однако, вне реакторные узлы были отработаны полностью.

Технические характеристики РД 0410

Тяга в пустоте: 3,59 тс (35,2 кН)
Тепловая мощность реактора: 196 МВт
Удельный импульс тяги в пустоте: 910 кгс·с/кг (8927 м/с)
Число включений: 10
Ресурс работы: 1 час
Компоненты топлива: рабочее тело - жидкий водород, вспомогательное вещество - гептан
Масса с радиационной защитой: 2 тонны
Габариты двигателя: высота 3,5 м, диаметр 1,6 м.

Относительно небольшие габаритные размеры и вес, высокая температура ядерного топлива (3100 K) при эффективной системе охлаждения потоком водорода свидетельствует от том, что РД0410 является почти идеальным прототипом ЯРД для современных крылатых ракет. А, учитывая современные технологии получения самоостанавливающегося ядерного топлива, увеличение ресурса с часа до нескольких часов является вполне реальной задачей.

Конструкции ядерных ракетных двигателей

Ядерный ракетный двигатель (ЯРД) - реактивный двигатель, в котором энергия, возникающая при ядерной реакции распада или синтеза, нагревает рабочее тело (чаще всего, водород или аммиак).

Существует три типа ЯРД по виду топлива для реактора:

  • твердофазный;
  • жидкофазный;
  • газофазный.
Наиболее законченным является твердофазный вариант двигателя. На рисунке изображена схема простейшего ЯРД с реактором на твердом ядерном горючем. Рабочее тело располагается во внешнем баке. С помощью насоса оно подается в камеру двигателя. В камере рабочее тело распыляется с помощью форсунок и вступает в контакт с тепловыделяющим ядерным топливом. Нагреваясь, оно расширяется и с огромной скоростью вылетает из камеры через сопло.

В газофазных ЯРД топливо (например, уран) и рабочее тело находится в газообразном состоянии (в виде плазмы) и удерживается в рабочей зоне электромагнитным полем. Нагретая до десятков тысяч градусов урановая плазма передает тепло рабочему телу (например, водороду), которое, в свою очередь, будучи нагретым до высоких температур и образует реактивную струю.

По типу ядерной реакции различают радиоизотопный ракетный двигатель, термоядерный ракетный двигатель и собственно ядерный двигатель (используется энергия деления ядер).

Интересным вариантом также является импульсный ЯРД - в качестве источника энергии (горючего) предлагается использовать ядерный заряд. Такие установки могут быть внутреннего и внешнего типов.

Основными преимуществами ЯРД являются:

  • высокий удельный импульс;
  • значительный энергозапас;
  • компактность двигательной установки;
  • возможность получения очень большой тяги - десятки, сотни и тысячи тонн в вакууме.
Основным недостатком является высокая радиационная опасность двигательной установки:
  • потоки проникающей радиации (гамма-излучение, нейтроны) при ядерных реакциях;
  • вынос высокорадиоактивных соединений урана и его сплавов;
  • истечение радиоактивных газов с рабочим телом.

Ядерная энергодвигательная установка

Учитывая, что какую-либо достоверную информацию о ЯЭДУ по публикациям, в том числе и из научных статей, получить невозможно, принцип работы таких установок лучше всего рассматривать на примерах открытых патентных материалов, хотя и содержащих ноу-хау.

Так, например, выдающимся российским учёным Коротеевым Анатолием Сазоновичем, автором изобретения по патенту , приведено техническое решение по составу оборудования для современной ЯРДУ. Далее привожу часть указанного патентного документа дословно и без комментариев.


Сущность предлагаемого технического решения поясняется схемой, представленной на чертеже. ЯЭДУ, функционирующая в двигательно-энергетическом режиме, содержит электроракетную двигательную установку (ЭРДУ) (на схеме для примера представлено два электроракетных двигателя 1 и 2 с соответствующими системами подачи 3 и 4), реакторную установку 5, турбину 6, компрессор 7, генератор 8, теплообменник-рекуператор 9, вихревую трубку Ранка-Хильша 10, холодильник-излучатель 11. При этом турбина 6, компрессор 7 и генератор 8 объединены в единый агрегат - турбогенератор-компрессор. ЯЭДУ оснащена трубопроводами 12 рабочего тела и электрическими линиями 13, соединяющими генератор 8 и ЭРДУ. Теплообменник-рекуператор 9 имеет так называемые высокотемпературный 14 и низкотемпературный 15 входы рабочего тела, а также высокотемпературный 16 и низкотемпературный 17 выходы рабочего тела.

Выход реакторной установки 5 соединен со входом турбины 6, выход турбины 6 соединен с высокотемпературным входом 14 теплообменника-рекуператора 9. Низкотемпературный выход 15 теплообменника-рекуператора 9 соединен со входом в вихревую трубку Ранка-Хильша 10. Вихревая трубка Ранка-Хильша 10 имеет два выхода, один из которых (по «горячему» рабочему телу) соединен с холодильником-излучателем 11, а другой (по «холодному» рабочему телу) соединен со входом компрессора 7. Выход холодильника-излучателя 11 также соединен со входом в компрессор 7. Выход компрессора 7 соединен с низкотемпературным 15 входом в теплообменник-рекуператор 9. Высокотемпературный выход 16 теплообменника-рекуператора 9 соединен со входом в реакторную установку 5. Таким образом, основные элементы ЯЭДУ связаны между собой единым контуром рабочего тела.

ЯЭДУ работает следующим образом. Нагретое в реакторной установке 5 рабочее тело направляется на турбину 6, которая обеспечивает работу компрессора 7 и генератора 8 турбогенератора-компрессора. Генератор 8 производит генерацию электрической энергии, которая по электрическим линиям 13 направляется к электроракетным двигателям 1 и 2 и их системам подачи 3 и 4, обеспечивая их работу. После выхода из турбины 6 рабочее тело направляется через высокотемпературный вход 14 в теплообменник-рекуператор 9, где осуществляется частичное охлаждение рабочего тела.

Затем, из низкотемпературного выхода 17 теплообменника-рекуператора 9 рабочее тело направляется в вихревую трубку Ранка-Хильша 10, внутри которой происходит разделение потока рабочего тела на «горячую» и «холодную» составляющие. «Горячая» часть рабочего тела далее следует в холодильник-излучатель 11, где происходит эффективное охлаждение этой части рабочего тела. «Холодная» часть рабочего тела следует на вход в компрессор 7, туда же следует после охлаждения часть рабочего тела, выходящая из холодильника-излучателя 11.

Компрессор 7 производит подачу охлажденного рабочего тела в теплообменник-рекуператор 9 через низкотемпературный вход 15. Это охлажденное рабочее тело в теплообменнике-рекуператоре 9 обеспечивает частичное охлаждение встречного потока рабочего тела, поступающего в теплообменник-рекуператор 9 из турбины 6 через высокотемпературный вход 14. Далее, частично подогретое рабочее тело (за счет теплообмена с встречным потоком рабочего тела из турбины 6) из теплообменника-рекуператора 9 через высокотемпературный выход 16 вновь поступает к реакторной установке 5, цикл вновь повторяется.

Таким образом, находящееся в замкнутом контуре единое рабочее тело обеспечивает непрерывную работу ЯЭДУ, причем использование в составе ЯЭДУ вихревой трубки Ранка-Хильша в соответствии с заявляемым техническим решением обеспечивает улучшение массогабаритных характеристик ЯЭДУ, повышает надежность ее работы, упрощает ее конструктивную схему и дает возможность повысить эффективность ЯЭДУ в целом.

Ссылки:

Уже в конце нынешнего десятилетия в России может быть создан космический корабль для межпланетных путешествий на ядерной тяге. И это резко изменит ситуацию и в околоземном пространстве, и на самой Земле.

Ядерная энергодвигательная установка (ЯЭДУ) будет готова к полету уже в 2018 году. Об этом сообщил директор Центра имени Келдыша, академик Анатолий Коротеев . «Мы должны подготовить первый образец (ядерной энергетической установки мегаваттного класса. – Прим. "Эксперта Online") к летно-конструкторским испытаниям в 2018 году. Полетит она или нет, это другое дело, там может быть очередь, но она должна быть готова к полету», – передало его слова РИА « Новости» . Сказанное означает, что один из самых амбициозных советско-российских проектов в области освоения космоса вступает в фазу непосредственной практической реализации.

Суть этого проекта, корни которого уходят еще в середину прошлого века, вот в чем. Сейчас полеты в околоземное пространство осуществляются на ракетах, которые движутся за счет сгорания в их двигателях жидкого или твердого топлива. По сути, этот тот же двигатель, что и в автомобиле. Только в автомобиле бензин, сгорая, толкает поршни в цилиндрах, передавая через них свою энергию колесам. А в ракетном двигателе сгорающие керосин или гептил непосредственно толкают ракету вперед.

За прошедшие полвека эта ракетная технология была отработана во всем мире до мелочей. Но и сами ракетостроители признают, что . Совершенствовать – да, нужно. Пытаться увеличить грузоподъемность ракет с нынешних 23 тонн до 100 и даже 150 тонн на основе «усовершенствованных» двигателей сгорания – да, нужно пытаться. Но это тупиковый путь с точки зрения эволюции. «Сколько бы специалисты всего мира по ракетным двигателям ни трудились, максимальный эффект, который мы получим, будет исчисляться долями процентов. Из существующих ракетных двигателей, будь это жидкостные или твердотопливные, грубо говоря, выжато все, и попытки увеличения тяги, удельного импульса просто бесперспективны. Ядерные же энергодвигательные установки дают увеличение в разы. На примере полета к Марсу – сейчас надо лететь полтора-два года туда и обратно, а можно будет слетать за два-четыре месяца », – оценивал в свое время ситуацию экс-глава Федерального космического агентства России Анатолий Перминов .

Поэтому ещё в 2010 году, тогдашнем президентом России, а ныне премьер-министром Дмитрием Медведевым было дано распоряжение к концу этого десятилетия создать в нашей стране космический транспортно-энергетический модуль на основе ядерной энергетической установки мегаваттного класса. На разработку этого проекта до 2018 года из средств федерального бюджета, «Роскосмоса» и «Росатома» запланировано выделить 17 млрд рублей. 7,2 млрд из этой суммы выделено госкопорации «Росатом» на создание реакторной установки (этим занимается Научно-исследовательский и конструкторский институт энерготехники имени Доллежаля), 4 млрд – Центру имени Келдыша на создание ядерной энергодвигательной установки. 5,8 млрд рублей предназначается РКК «Энергия» для создания транспортно-энергетического модуля, то есть, проще говоря, ракеты-корабля.

Естественно, все эти работы делаются не на пустом месте. С 1970 по 1988 годы в космос только СССР запустил более трех десятков спутников-шпионов, оснащенных ядерными силовыми установками малой мощности типа «Бук» и «Топаз». Они использовались при создании всепогодной системы наблюдения за надводными целями на всей акватории Мирового океана и выдачи целеуказания с передачей на носители оружия или командные пункты – система морской космической разведки и целеуказания «Легенда» (1978 год).

NASA и американские компании, производящие космические аппараты и средства их доставки, так и не смогли за это время, хоть и трижды пытались, создать ядерный реактор, который бы устойчиво работал в космосе. Поэтому в 1988 году через ООН был проведен запрет на использование космических аппаратов с ядерными энергетическими двигательными установками, и производство спутников типа УС-А с ЯЭДУ на борту в Советском Союзе было прекращено.

Параллельно в 60-70-е годы прошлого века Центр имени Келдыша вел активные работы по созданию ионного двигателя (электроплазменного двигателя), который наиболее подходит для создания двигательной установки большой мощности, работающей на ядерном топливе. Реактор выделяет тепло, оно генератором преобразуется в электричество. С помощью электричества инертный газ ксенон в таком двигателе сначала ионизируется, а затем положительно заряженные частицы (положительные ионы ксенона) ускоряются в электростатическом поле до заданной скорости и создают тягу, покидая двигатель. Вот такой принцип работы ионного двигателя, прототип которого уже создан в Центре имени Келдыша.

«В 90-х годах XX века мы в Центре Келдыша возобновили работы по ионным двигателям. Сейчас должна быть создана новая кооперация для такого мощного проекта. Уже есть прототип ионного двигателя, на котором можно отрабатывать основные технологические и конструктивные решения. А штатные изделия еще нужно создавать. У нас срок определен – к 2018 году изделие должно быть готово к летным испытаниям, а к 2015 году должна быть завершена основная отработка двигателя. Дальше – ресурсные испытания и испытания всего агрегата в целом », – отмечал в прошлом году начальник отдела электрофизики Исследовательского центра имени М.В. Келдыша, профессор факультета аэрофизики и космических исследований МФТИ Олег Горшков.

Какая практическая польза России от этих разработок? Эта польза намного превышает те 17 млрд рублей, которые государство намерено потратить до 2018 года на создание ракеты-носителя с ядерной силовой установкой на борту мощностью 1 МВт. Во-первых, это резкое расширение возможностей нашей страны и человечества вообще. Космический корабль с ядерным двигателем дает реальные возможности людям совершить и другим планетам. Сейчас многие страны таких кораблей. Возобновились они и в США в 2003 году, после того как к американцам попали два образца российских спутников с ядерными силовыми установками.

Однако, несмотря на это, член спецкомиссии NASA по пилотируемым полетам Эдвард Кроули, например, считает, что на корабле для международного полета к Марсу должны стоять российские ядерные двигатели. «Востребован российский опыт в сфере разработки ядерных двигателей. Я думаю, у России есть очень большой опыт как в разработке ракетных двигателей, так и в ядерных технологиях. У нее есть также большой опыт адаптации человека к условиям космоса, поскольку российские космонавты совершали очень долгие полеты », – сказал Кроули журналистам весной прошлого года после лекции в МГУ, посвященной американским планам пилотируемых исследований космоса.

Во-вторых , такие корабли позволяют резко активизировать деятельность и в околоземном пространстве и дают реальную возможность началу колонизации Луны (уже есть проекты строительства на спутнике Земли атомных станций). «Использование ядерных энергодвигательных установок рассматривается для больших пилотируемых систем, а не для малых космических аппаратов, которые могут летать на других типах установок, использующих ионные двигатели или энергию солнечного ветра. Использовать ЯЭДУ с ионными двигателями можно на межорбитальном многоразовом буксире. К примеру, возить грузы между низкими и высокими орбитами, осуществлять полеты к астероидам. Можно создать многоразовый лунный буксир или отправить экспедицию на Марс », – считает профессор Олег Горшков. Подобные корабли резко меняют экономику освоения космоса. По расчетам специалистов РКК «Энергия», ракета-носитель на ядерной тяге обеспечивает снижение стоимости выведения полезного груза на окололунную орбиту более чем в два раза по сравнению с жидкостными ракетными двигателями.

В-третьих , это новые материалы и технологии, которые будут созданы в ходе реализации этого проекта и затем внедрены в другие отрасли промышленности – металлургию, машиностроение и т.д. То есть это один из таких прорывных проектов, которые реально могут толкнуть вперед и российскую, и мировую экономику.

Ядерный ракетный двигатель - ракетный двигатель, принцип действия которого основан на ядерной реакции или радиоактивном распаде, при этом выделяется энергия, нагревающая рабочее тело, которым могут служить продукты реакций либо какое-то другое вещество, например водород.

Давайте разберем варианты и принципы из действия…

Существует несколько разновидностей ракетных двигателей, использующих вышеописанный принцип действия: ядерный, радиоизотопный, термоядерный. Используя ядерные ракетные двигатели, можно получить значения удельного импульса значительно выше тех, которые могут дать химические ракетные двигатели. Высокое значение удельного импульса объясняется большой скоростью истечения рабочего тела - порядка 8-50 км/с. Сила тяги ядерного двигателя сравнима с показателями химических двигателей, что позволит в будущем заменить все химические двигатели на ядерные.

Основным препятствием на пути полной замены является радиоактивное загрязнение окружающей среды, которое наносят ядерные ракетные двигатели.

Их разделяют на два типа - твердо-и газофазные. В первом типе двигателей делящееся вещество размещается в сборках-стержнях с развитой поверхностью. Это позволяет эффективно нагревать газообразное рабочее тело, обычно в качестве рабочего тела выступает водород. Скорость истечения ограничена максимальной температурой рабочего тела, которая, в свою очередь, напрямую зависит от максимально допустимой температуры элементов конструкции, а она не превышает 3000 К. В газофазных ядерных ракетных двигателях делящееся вещество находится в газообразном состоянии. Его удержание в рабочей зоне осуществляется посредством воздействия электромагнитного поля. Для этого типа ядерных ракетных двигателей элементы конструкции не являются сдерживающим фактором, поэтому скорость истечения рабочего тела может превышать 30 км/с. Могут быть использованы в качестве двигателей первой ступени, невзирая на утечку делящегося вещества.

В 70-х гг. XX в. в США и Советском Союзе активно испытывались ядерные ракетные двигатели с делящимся веществом в твердой фазе. В США разрабатывалась программа по созданию опытного ядерного ракетного двигателя в рамках программы NERVA.

Американцами был разработан графитовый реактор, охлаждаемый жидким водородом, который нагревался, испарялся и выбрасывался через ракетное сопло. Выбор графита был обусловлен его температурной стойкостью. По этому проекту удельный импульс полученного двигателя должен был вдвое превышать соответствующий показатель, характерный для химических двигателей, при тяге в 1100 кН. Реактор Nerva должен был работать в составе третьей ступени ракеты-носителя «Сатурн V», но в связи с закрытием лунной программы и отсутствием других задач для ракетных двигателей этого класса реактор так и не был опробован на практике.

В настоящее время в стадии теоретической разработки находится газофазный ядерный ракетный двигатель. В газофазном ядерном двигателе подразумевается использовать плутоний, медленно движущаяся газовая струя которого окружена более быстрым потоком охлаждающего водорода. На орбитальных космических станциях МИР и МКС проводились эксперименты, которые могут дать толчок к дальнейшему развитию газофазных двигателей.

На сегодняшний день можно сказать, что Россия немного «заморозила» свои исследования в области ядерных двигательных установок. Работа российских ученых больше ориентирована на разработку и совершенствование базовых узлов и агрегатов ядерных энергодвигательных установок, а также их унификацию. Приоритетным направлением дальнейших исследований в этой области является создание ядерных энергодвигательных установок, способных работать в двух режимах. Первым является режим ядерного ракетного двигателя, а вторым - режим установки генерирующей электроэнергии для питания аппаратуры, установленной на борту космического аппарата.