По химическому составу стекло классифицируют. Основные типы стекол. Далее подробнее остановимся на имеющейся на данный момент классификации стекол

Стекло, разлетаясь на мелкие кусочки, ассоциируется для нас с разбившимся кристаллом. Величайшее заблуждение, даже более того: всё, что может кристаллизоваться, стеклом быть не может. При его производстве нужный состав расплавляют, а потом дают очень быстро остыть, минуя точку кристаллизации. То есть получают затвердевшее аморфное (вязкое) вещество, твёрдую жидкость. Значит, стекло надо рассматривать, как переохлаждённую жидкость с высочайшей вязкостью. К примеру, даже из металла можно получить стекло, охлаждая его со скоростью 100000 - 1000000 К/с, правда, оно не прозрачно, но здесь дело том, что силикатное стекло весь свет пропускает, а железное ― весь отражает.

Состав стекла

Стекло делают также из органических веществ (т.н. оргстекло), но промышленное стекло, используемое в строительстве, производят, в основном, из кварцевого песка SiO 2 . К нему добавляется мел СаСО3 или известь СаО, а также сода Na2CO3. Взятые в нужных пропорциях, они перемешиваются и отправляются в печь При температурах в диапазоне 1100-1600 °С полученная масса плавится, из неё улетучивается СО 2 . Далее ей дают медленно остыть. Но стекло мягчеет и плавится при 500-600°С, значит, при этой же температуре при остывании оно может начать кристаллизоваться, и тогда это будет уже не стекло. Поэтому, начиная с температуры чуть выше указанной, производят быстрое остывание стекломассы. Она твердеет, но остаётся аморфной. Это уже стекло, имеющее состав Na 2 O СаО 6SiO 2 .

Классификация строительного стекла

Классификаций, учитывающих определённые параметры стекла множество, поэтому лучше перечислить не отдельные виды стекла, а способы классификации. Итак, строительные стёкла классифицируются по:

  • - форме готового стекла. Оно может быть плоским, профильным, листовым, может представлять собой стеклоблоки или стекловолокно;
  • - способу производства. Существует тянутое, прокатное и прессованное, пеностекло и стекловата имеют непохожую на остальные технологию производства;
  • - целям применения. Всем известно оконное, а ведь есть ещё и полированное, закалённое, в виде плиток и т.д.;
  • - свойствам. Оно может быть светотехническим, армированным, цветным, пуленепробиваемым, шумоизоляционным, теплоизоляционным.

Свойства стекла

Естественно, свойства стекла будут зависеть от его состава. Например, химическая стойкость зависит от наличия в стекле щелочных окислов. Стоит заменить одновалентные натриевые окислы окислами с большей валентностью, как она повышается.

Ранее ценились только оптические свойства, о других мало задумывались, считалось, что стекло только и предназначено для того, чтобы пропускать свет. Конечно, после бычьего пузыря в оконце это был верх прогресса. Из оптических свойств, кроме прозрачности, ещё можно назвать отражение, светопреломление, рассеивание. Все эти характеристики можно менять, изменяя химический состав или цвет стекла. К примеру, силикатное стекло не пропускает ультрафиолет, а кварцевое ― свободно.

Из других свойств стекла стоит отметить хрупкость, борьба с которой и породила создание противоударных и пуленепробиваемых стёкол. Теплопроводность стекла довольно высока. Что касается электропроводности, то само стекло плохо проводит электрический ток, хорошо проводит поверхностная плёнка, впитывающая влагу.

Стекло прекрасно противостоит воде, щелочам и кислотам, правда, не любит фосфорную и плавиковую кислоты. Оно режется, шлифуется, обтачивается и полируется специальными инструментами с содержанием алмаза. Дело в том, что по шкале Мооса твёрдость стекла 5-7, у алмаза ― все 10. При температурах около 1000°С стекло можно формовать, вытягивать в трубки и листы, делать волокна, сваривать, выдувать.

Еще о стеклах и изделиях из стекла:

-

-

-


К атегория:

Шлифование и полирование стекла

Понятие о стекле и классификация изделий из стекла

Понятие о стекле. Твердые тела бывают кристаллические и аморфные (стекловидные). Кристаллические тела имеют геометрически правильную кристаллическую структуру, образуемую частицами (ионами или атомами) в строго повторяющемся по всему объему порядке (дальний порядок). Для них характерна постоянная температура плавления. Аморфные тела при повышении температуры постепенно размягчаются вплоть до образования расплава. Для них характерен ближний порядок, т. е. они имеют только небольшие участки правильной, упорядоченной структуры, которые несимметрично связаны между собой.

Стеклом называют аморфные тела, получаемые путем переохлаждения расплава независимо от их химического состава и температурной области затвердевания и обладающие в результате постепенного увеличения вязкости механическими свойствами твердых тел, причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым. По своей природе стекла - изотропные вещества, т. е. они имеют одинаковые физические свойства во всех направлениях, тогда как кристаллические тела - анизотропны, т. е. их свойства различны по разным направлениям.

Стекло - это прозрачный (бесцветный или окрашенный) хрупкий материал. По типу стеклообразующего компонента различают стекла силикатные (на основе ЭЮг), боратные (на основе В203), боросиликатные, алюмосиликатные, бороалюмо-силикатные, фосфатные (на основе Р2О5) и др.

Классификация изделий из стекла. Из стекла изготовляют различные изделия, которые классифицируют по различным признакам.

По назначению изделия из стекла подразделяются на технические, строительные и бытовые.

К техническому стеклу относятся оптическое, химико-лабораторное, медицинское, электротехническое, электродное, транспортное, приборное, защитное, тепло-, звуко- и электроизоляционное, светотехническое, кусковое, а также трубы, технические зеркала, фотостекло, стеклоткани и стеклопластики, фильтры, стеклоабразивы и различные стеклянные детали машин и установок. Это наиболее многочисленный класс изделий из стекла.

В класс строительного стекла входят изделия из стекла, используемые в строительстве: оконное, витринное, профильное, армированное, узорчатое, облицовочное, пеностекло, мозаика, стеклопакеты, стеклоблоки, витражи, архитектурные, различные строительные детали, строительные стеклопластики и декоративные отделочные стеклоткани.

Бытовое стекло - посудное и очковое, стеклотара, зеркала бытовые, эмали, глазури, украшения и имитации. К посудному стеклу относится сортовое стекло с художественной обработкой или без (стаканы, бокалы, рюмки, вазы, графины, салатники, сахарницы, пудреницы, термосы). Именно эти изделия чаще всего шлифуют и полируют.

По характеру поверхности изделия из стекла бывают с глянцевой или неглянцевой поверхностью. Глянцевая поверхность получается металлизацией, покрытием полупроводником или проводником, органической пленкой и кремнийорганиче-скими соединениями. Отдельную группу составляют изделия с гладкей, химически травленной поверхностью. Неглянцевая, свободная от покрытий поверхность бывает матированная сплошная или узорчатая, зернистая, «морозная».

По роду обработки изделия из стекла подразделяются на пять классов: первый - изделия, подвергнутые тепловой обработке, второй - изделия, поверхность которых имеет механическую (холодную) обработку; третий - с механической (холодной) обработкой краев изделий; четвертый - с химической обработкой; пятый - с поверхностными покрытиями.

В соответствии с требованиями, предъявляемыми к каждой группе изделий, разработаны многочисленные составы стекол. Для удобства составы стекол выражают в процентах по массе оксидов, входящих в данное стекло, например:
обычного Si02 -74,5; А1203 -0,5; СаО -6,5; MgO -2,0; Na20 -14,0; KjO - 2,0; хрустального Si02 -57,5; А1203 -0,5; К20-15,5; В203 - 1,5; ZnO-1,0; РЬО - 24,0 (в состав хрустальных стекол вводят до 24% РЬО , который улучшает блеск и колер стекла).


Согласно определению Комиссии по терминологии АН СССР (1932г.) «стеклом называются все аморфные тела, получаемые путем переохлаж­дения расплава независимо от их состава и температурной области за­твердевания и обладающие в результате постепенного увеличения вяз­кости механическими свойствами твердых тел, причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым» .

Из определения следует, что в стеклообразном состоянии могут нахо­диться вещества, принадлежащие к разным классам химических соеди­нений.

Органические стекла представляют собой органические полимеры-полиакрилаты, поликарбонаты, полистирол, сополимеры винилхлорида с метилметакрилатом, - находящиеся в стеклообразном состоянии. Наибольшее практическое применение нашли стекла на основе полиметил-метакрилата. По своей технологии, механизму твердения и строению ор­ганические стекла существенно отличаются от неорганических и состав­ляют особый объект изучения.

Многовековая история стеклоделия связана с изготовлением сили­катных стекол, основывающихся на системе Na 2 O-СаО-SiO 2 . Только во второй половине XX в. было показано, что натрий-кальций-силикатные стекла составляют небольшую часть безграничного мира неоргани­ческих стекол.

По типу неорганических соединений различают следующие классы стекол: элементарные, галогенидные, халькогенидные, оксидные, метал­лические, сульфатные, нитратные, карбонатные и др.

Элементарные стекла с пособны образовывать лишь небольшое число элементов - сера, селен, мышьяк, фосфор, углерод.

Стеклообразные - серу и селен, удается получить при быстром переохлаждении расплава; мышьяк - методом сублимации в вакууме; фос­фор-при нагревании до 250°С под давлением более 100 МПа; угле­род-в результате длительного пиролиза органических смол. Промыш­ленное значение находит стеклоуглерод, обладающий уникальными свойствами, превосходящими свойства кристаллических модификации углерода: он способен оставаться в твердом состоянии вплоть до 3700°С, имеет низкую плотность порядка 1500 кг/м 3 , обладает высокой механи­ческой прочностью, электропроводностью, химически устойчив.

Галогенидные стекла получают на основе стеклообразующего ком­понента BeF 2 . Многокомпонентные составы фторбериллатных стекол со­держат также фториды алюминия, кальция, магния, стронция, бария. Фторбериллатные стекла находят практическое применение благодаря высокой устойчивости к действию жестких излучений, включая рентге­новские лучи, и таких агрессивных сред, как фтор и фтористый во­дород.

Халькогенидные стекла получают в бескислородных системах типа As-J (где Z-S, Se, Te), Ge-As-X, Ge - Sb - X , Qe - P - X и др. Халь­когенидные стекла имеют высокую прозрачность в ИК-области спектра, обладают электронной проводимостью, обнаруживают внутренний фото­эффект. Стекла применяются в телевизионных высокочувствительных камерах, в электронно-вычислительных машинах в качестве переключа­телей или элементов запоминающих устройств.

Оксидные стекла представляют собой обширный класс соединении. Наиболее легко образуют стекла оксиды SiO 2 , GeO 2 , ВгО 3 , P 2 O 5 .

Большая группа оксидов - TeO 2 , TiО 2 , SeО 2 , WO 2 , BiO 5 ,

Например, легко образуются стекла в систе­мах CaO-Al 2 O 5 , СаО-МgО 3 -ВаО 3 , P 5 O 5 - Ws .

Каждый из стеклообразующих оксидов может образовать стекла в комбинации с промежуточными или модифицирующими оксидами. Стек­ла получают названия по виду стеклообразующего оксида: силикатные, боратные, фосфатные, германатные и т.д. Практическое значение име­ют стекла простых и сложных составов, принадлежащие к силикатным, боратным, боросиликатным, фосфатным, германатным, алюминатным, молибдатным, вольфраматным и другим системам.

Промышленные составы стекол содержат, как правило, не менее 5 компонентов, а специальные и оптические стекла могут содержать более 10 компонентов.

Важнейшее достоинство стекольной технологии состоит в том, что она позволяет получать в твердом состоянии вещества с нестехиометрическим соотношением компонентов, которые не существуют в кристалличе­ском состоянии. Более того, свойства стекол удается плавно регулиро­вать в нужном направлении путем постепенного изменения состава.

Стекла, полученные на основе нитратных, сульфатных и карбонат­ных соединений, в настоящее время представляют научный интерес, но практического применения пока не имеют.

Традиционная технология получения стекол включает переохлажде­ние расплава до твердого состояния без кристаллизации. На этом спо­собе основана мировая промышленная технология производства стекла.

Создание технических устройств, позволяющих отводить тепло с бо­лее высокой скоростью, расширяет число веществ, которые удается по­лучить в стеклообразном состоянии путем охлаждения расплава. Сверх­высокие скорости переохлаждения порядка нескольких миллионов гра­дусов в 1 с позволяют фиксировать в стеклообразном состоянии сплавы металлов (например, в системе Fe-Mi-В-Р).

Промышленное значение приобретают способы получения стекол пу­тем вакуумного испарения, конденсации из паровой фазы, плазменного напыления. В этих случаях стекло удается получить из газовой фазы, минуя расплавленное состояние.

Облучение кристаллов частицами высоких энергий или воздействие на них ударной волны приводит к неупорядоченному смещению частиц из положений равновесия и, таким образом, к аморфизации структуры, в результате чего твердые кристаллические вещества могут быть пере­ведены в стеклообразное состояние, минуя стадию плавления.

) обратимы. Температурный интервал T f - Т g , в пределах к-рого происходят эти процессы, наз. интервалом стеклования (T f -т-ра перехода из жидкого состояния в пластичное, Т g -т-ра перехода из пластичного состояния в твердое). Интервал стеклования (обычно 100-200 °С) зависит от хим. состава и скорости охлаждения стекла неорганического и представляет собой переходную область, в пределах к-рой происходит резкое изменение его св-в. В стекле неорганическом существуют образования (рои, кластеры или атомные комплексы) с размерами от 0,5 до 2 нм и разл. включения технол. или ликвационного происхождения от 5,0 до 100,0 нм.

Физико-химические свойства и применение. Оптические св-ва. Стекла неорганические отличаются прозрачностью в разл. областях спектра. Оксидные стекла неорганические характеризуются высокой прозрачностью в видимой области спектра: коэф. прозрачности т(т = I/I 0 , где I 0 - интенсивность падающего на пов-сть стекла света, I-интенсивность света, прошедшего сквозь стекло) для оконного стекла неорганического 0,83-0,90, для оптического-0,95-0,99.

В связи с этим стекло неорганическое незаменимо при остеклении зданий и разл. видов транспорта, изготовлении зеркал и оптич. приборов, включая лазерные, лаб. посуды, ламп разл. ассортимента и назначения, осветит. аппаратуры, телевизионной техники, волоконно-оптич. линий связи, хим. аппаратуры.

В зависимости от состава и условий получения стекло неорганическое способно по-разному преломлять, рассеивать и поглощать свет в видимой, УФ, ИК и рентгеновской областях спектра (см. Оптические материалы), Нек-рым стеклам неорганическим свойственна также фоточувствительность, т. е. способность изменять коэф. поглощения под действием УФ или рентгеновского облучения, a -лучей, нейтронов , что используют в произ-ве т. наз. фотохромных стекол неорганических, а также при изготовлении аппаратуры и приборов для радиац. техники. Наиб. высоким светопропусканием в ИК области обладают алюмофосфатные и халькогенидные стекла неорганические, повышенным-стекла неорганические на основе SiO 2 ; УФ лучи интенсивно поглощают стекла неорганические, содержащие оксиды Pb, Fe, Ti, рентгеновские и a -лучи-стекла неорганические с высоким содержанием оксидов Рb или Ва.

Галогенидные стекла неорганические на основе BeF 2 отличаются уникальным комплексом оптич. постоянных, высокой устойчивостью к действию жестких излучений и агрессивных сред, таких, как F 2 , HF. Стекла неорганическое на основе фторидов Zr и Ва прозрачны в видимой и ИК областях спектра. Халькогенидные стекла неорганические обладают также электронной проводимостью; применяются в телевизионных высокочувствит. камерах, ЭВМ (в качестве переключателей или элементов запоминающих устройств).

Плотность промышленных стекол неорганических колеблется от 2,2 до 8,0 г/см 3 . Низкие значения плотности характерны для бо-ратных и боросиликатных стекол неорганических; среди силикатных стекол неорганических наим. плотностью обладает кварцевое. Введение в состав стекол неорганических щелочных и щел.-зем. оксидов приводит к увеличению его плотности: плотность возрастает при эквимолекулярной замене одного оксида другим в рядах Li 2 O < Na 2 O < К 2 О и MgO < CaO < SrO < ВаО < РbО. Плотность последних стекол неорганических достигает 8,0 г/см 3 .

Мех. св-ва. Стекло неорганическое-хрупкий материал, не обладает пластич. деформацией , весьма чувствителен к мех. воздействиям, особенно ударным. Значение модуля упругости различных стекол неорганических колеблется в пределах 44,2-87,2 ГПа. Наибольшее его значение характерно для малощелочных алюмосиликатных стекол неорганических с высоким содержанием оксидов Be, Mg и Ca, наименьшее-для боро- и свинцовосиликатных стекол неорганических с высоким содержанием оксидов В и Рb; модуль упругости кварцевого стекла неорганического 73,2 ГПа. Ударная вязкость силикатных стекол неорганических 1,5-2,0 кН/м, в то же время сопротивление сжатию такое же, как у чугуна,-0,5-2,5 ГПа.

Электрич. св-ва стекол неорганических зависят от состава и т-ры среды-стекла неорганические могут быть диэлектриками , полупроводниками или проводниками. Большая группа оксидных стекол неорганических (силикатные, боратные, фосфатные) относится к классу изоляторов; почти идеальный изолятор - кварцевое стекло неорганическое. Поскольку носители тока в оксидных стеклах неорганических -катионы щелочных и щел.-зем. металлов , электропроводность, как правило, возрастает с увеличением их содержания в стеклах неорганических и повышением т-ры. Стеклянные изоляторы используют для высоковольтных линий электропередач. Пригодность электротехнических стекол неорганических для работы в тех или иных температурных условиях зависит от их состава и оценивается по т-ре (ТК 100), при к-рой стекло неорганическое имеет уд. электрич. проводимость 1,00·10 -6 См·м -1 . Для кварцевого стекла ТК 100 600°С, для других, используемых в электротехн. пром-сти,-230-520°С.

Диэлектрич. проницаемость e обычных промышленных стеклах неорганических невелика, причем самое низкое значение у кварцевого стекла неорганического и стеклообразного В 2 О 3 (3,8-4,0). С увеличением содержания в стеклах неорганических ионов щелочных и тяжелых металлов (Ва, Рb), обладающих высокой поляризуемостью , e повышается в силу влияния ионной поляризации . Возрастает она также с повышением т-ры выше 200 °С и при действии частот до 50 Гц. Диэлектрич. потери наиб. низки для силикатных стекол неорганических, для кварцевого стекла неорганического при 20°С и частоте 10 -10 Гц tgd 0,0001. Для закаленных стекол неорганических tgd в 1,5-2,0 раза выше, чем для отожженных. Электрич. прочность стекол неорганических (пробивное напряжение) в однородном электрич. поле достигает высоких значений (10 4 -10 5 кВ·м -1).

Термич. св-ва. Для обычных силикатных стекол термостойкость 60-100°С, для пирекса-280°С, для кварцевого стекла-ок. 1000°С. Для силикатных стекол неорганических коэф. теплопроводности 0,6-1,34 Вт/(м·°С), уд. теплоемкость при комнатной т-ре 0,3-1,05 кДж/(кг · К), коэф. линейного термич. расширения 5·10 -7 -120·10 -7 К -1 (последнее значение-для свинецсодержащих стекол неорганических).

Хим. стойкость стекол неорганических характеризуется высокой стойкостью к действию влажной атмосферы , воды , к-т (HF, Н 3 РО 4). Различают 4 гидролитич. класса хим. стойкости, оцениваемой по кол-ву щелочей и др. р-римых компонентов, перешедших в р-р при кипячении стекол неорганических в воде или р-рах к-т. Наиб. хим. стойкостью обладают кварцевое, боросиликатное (не более 17% В 2 О 3) и алюмосиликатное стекла неорганические. Хим. стойкость стекол неорганических существенно возрастает также и при введении в состав оксидов Ti, Zr, Nb, Та, Sn. Стойкость стекол неорганических к реагентам с рН < 7 повышают путем спец. обработки или защиты пов-сти пленками кремнийорг. соединений, фторидами Mg, оксидами А1 и Zn. По убыванию интенсивности разрушающего действия на стекла неорганические хим: реагенты располагаются в след. ряд: HF > Н 3 РО 4 > р-ры щелочей > р-ры щелочных карбонатов > НСl = H 2 SO 4 > вода . Макс. потеря массы стекол неорганических на 100 см 2 пов-сти в р-рах к-т (кроме HF, Н 3 РО 4) составляет ок. 1,5 мг, в то время как в щелочных средах возрастает до 150 мг.

Получение стекла. Традиц. технология пром. способа получения стекол неорганических состоит в подготовке сырьевых материалов (дробление , сушка , просеивание), приготовлении шихты (дозирование сырьевых компонентов и их смешивание), варке, формовании изделий, отжиге , обработке (термич., хим., мех.).

В зависимости от назначения стекла неорганического сырье для его изготовления содержит разл. оксиды и минералы . Кремнезем , являющийся главной составной частью стекол неорганических, вводят в шихту в виде кварцевого песка или- молотого кварца (вредные примеси-соед. Сr и Fe, придающие стеклам неорганическим желтовато-зеленый и зеленый цвет). Для варки высококачеств. бесцветных стекол неорганических песок очищают физ. и хим. способами; размер зерен песка 0,2-0,5 мм. В 2 О 3 в шихту вводят в виде буры или Н 3 ВО 3 , Р 2 О 5 -в виде фосфатов или Н 3 РО 4 , Аl 2 О 3 -в виде глинозема , каолина , глины , полевого шпата или Аl(ОН) 3 , Na 2 O-B виде Na 2 CO 3 , К 2 О-в виде К 2 СО 3 или KNO 3 , СаО-в виде мела или известняка , ВаО-в виде ВаСО 3 , Ba(NO 3) 2 или BaSO 4 , MgO-в виде доломита или магнезита , Li 2 O-B виде Li 2 СО 3 и прир. минералов лепидолита или сподумена, РbО-в виде сурика , глета или силиката Рb.

Вспомогат. материалы шихты - осветлители, обесцвечива-тели, красители , глушители, восстановители и др. В качестве осветлителей применяют небольшие кол-ва (NH 4),SO 4 , Na 2 SO 4 , NaCl, As 2 O 3 и As 2 O 5 в сочетании с (NH 4) 2 NO 3 , плавиковый шпат . Нек-рые из них одновременно являются и обесцвечивателями - окисляют в стеклах неорганических соед. Fe. Иногда для обесцвечивания в шихту вводят небольшие кол-ва в-в, окрашивающих стекломассу в дополнительный к зеленому

цвет (Se, соед. Со, Мh и др.). Окрашивают стекла неорганические, добавляя в шихту красящие в-ва. Желтую окраску стеклам неорганическим придают СrО 3 , NiO, Fe 2 O 3 , зеленую-Сr 2 О 3 и СиО, синюю-СuО и СоО, фиолетовую - NiO и Мn 2 О 3 , розовую-СоО, МnО и Se, коричневую - Fe 2 O 3 , FeS, красно-рубиновую - коллоидные Си и Аи.

Процесс стекловарения -процесс получения однородного расплава - условно разделяют на неск. стадий: образование силикатов , стеклообразование, осветление , гомогенизация, охлаждение.

Варку стекол неорганических проводят в печах непрерывного действия разл. типа-электрич., газопламенных, газопламенных с дополнит. электроподогревом. На первой стадии вследствие плавления эвтектич. смесей и солей происходит образование силикатов и др. промежут. соединений, появляется жидкая фаза. Силикаты и непрореагировавшие компоненты вместе с жидкой фазой представляют собой на этой стадии плотную спекшуюся массу. Для большинства силикатных стекол неорганических первый этап завершается при 1100-1200 °С. На стадии стеклообразования при 1200-1250 °С растворяются остатки шихты, происходит взаимное растворение силикатов , удаляется пена и образуется относительно однородная стекломасса, насыщенная, однако, газовыми включениями, поскольку обычно шихта силикатных стекол неорганических содержит ок. 18% химически связанных газов (СО 2 , SO 2 , O 2 и др.). На стадии осветления (1500-1600 °С, длительность-до неск. суток) происходит удаление из расплава газовых пузырей. Для ускорения процесса используют добавки , снижающие поверхностное натяжение массы. Одновременно с осветлением идет гомогенизация -усреднение расплава по составу. Наиб. интенсивно гомогенизация Осуществляется при мех. перемешивании стекломассы мешалками из огнеупорных материалов . На стадии охлаждения проводят подготовку стекломассы к формованию, для чего равномерно снижают т-ру на 400-500°С и достигают необходимой вязкости стекла неорганического. Формование изделий из стекломассы осуществляют разл. методами - прокатом, прессованием, прессвыдуванием, выдуванием, вытягиванием и др. на спец. стеклоформующих машинах.

Прессование применяют в произ-ве стеклянной тары, архитектурных деталей, посуды; выдувание-в произ-ве узкогорлой тары, сортовой (столовой) посуды, электровакуумных изделий; прессвыдувание-в машинном произ-ве ши-рокогорлой посуды; вытягивание-при изготовлении оконного и техн. листового стекол неорганических, трубок, труб, стержней, стеклянных волокон ; прокатка-при произ-ве листового стекла неорганического разл. видов, преим. строительного толщиной 3 мм и более. Др. методы: отливка в формы при изготовлении крупногабаритных предметов, моллирование - получение изделий в форме при нагр. твердых кусочков стекол неорганических.

При произ-ве пеностекла в шихту (или тонкоизмельченный стеклянный бой) добавляют парообразователи, выделяющие при варке стекла газ и вспучивающие стеклянную массу. Вспенивают стекло при 700-800 °С (для обычной шихты) или 950-1150 °С (для шихты из глин , горных пород , нерудных ископаемых).

Помимо традиц. метода получения применяют новые-в частности золь-гель процесс с образованием стекла.поликонденсация

Описанным выше методом получают заготовки, трубы и волокна для оптич. световодов и др. элементов волоконной оптики.

Металлич., халькогенидные и галогенидные стекла неорганические получают быстрым охлаждением расплавов (см. Стеклообразное состояние). При этом часто используют сверхвысокие скорости охлаждения (10 5 -10 8 К/с).

Историческая справка. Стеклоделие впервые возникло в Египте и Месопотамии в 4-м тыс. до н. э. В 1 в. н. э. наиб. крупный центр стеклоделия-Рим, с 9 до 17вв. н. э.-Венеция. В развитии стеклотехники условно выделяют 4 периода: в 4-2-м тыс. до н. э. из стекол неорганических делали украшения и предметы религиозного культа, во 2-1-м тыс. до н. э.-небольшие сосуды ; 1-е тыс. до н. э. началось с изобретения стеклодувной трубки, что позволило стеклоделию достичь большой высоты, а стекла неорганические превратить в материал широкого потребления; нач. 19-кон. 20 вв. характеризуется распространением машинной техники, созданием многочисл. составов стекол неорганических и проникновением его во все области быта, науки и техники. В России стеклоделие развивалось с 10-11 вв. Основоположник научного стеклоделия в России-М. В. Ломоносов, организовавший первую научную лабораторию по переработке стекла. Первый стекольный завод в России построен в 1635.

Лит.: Роусон Г., Неорганические стеклообразующие системы, пер. с англ., М., 1970; Аппен А. А., Химия стекла, 2 изд., Л., 1974; Лазерные фосфатные стекла, М.,-1980; Борисова 3. У., Халькогенидные полупроводниковые стекла, Л., 1983; Химическая технология стекла и ситаллов , М., 1983; Фельц А., Аморфные и стеклообразные неорганические твердые тела , пер. с нем., М., 1986; Неорганические стекла и изделия на их основе для волоконно-оптических систем связи и датчиков, в сб.: Итоги науки и техники, сер . Технология силикатных и тугоплавких неметаллических материалов, т. 2, М., 1989; Physilische Chemie der Glasoherflache, Lpz., 1981; Shufflebotham P.K., "J. of non-crystalline solids", 1987, v. 92, № 2-3, p. 183-244; Rawson Н„ "IEE Proc.", 1988, pt A, v. 135, № 6, p. 325-45. П.Д. Саркисов, Л. А. Орлова.

Стекло известно людям уже около 55 веков. Самые древние образцы обнаружены в Египте. В Индии, Корее, Японии найдены стеклянные изделия, возраст которых относится к 2000 году до нашей эры. Раскопки свидетельствуют, что на Руси знали секреты производства стекла более тысячи лет назад. А первое упоминание о русском стекольном заводе (он был построен под Москвой возле деревни Духанино) относится к 1634 году. Несмотря на столь древнюю историю, массовый характер производство стекла приобрело лишь в конце прошлого столетия благодаря изобретению печи Сименса-Мартина и заводскому производству соды. А уж листовое стекло - вещь и вовсе современная. Технология его изготовления была разработана в нашем веке.

Проверка на выносливость.

Механическую прочность стекла характеризует твердость. Она же определяет его сопротивление деформации, которая непременно возникнет, если попытаться "внедрить" в стекло более твердое тело (камень, например). Любопытен практический метод определения микротвердости. В поверхность стекла вдавливается алмазная пирамидка при нагрузке вдавливания от 50 до 100 граммов.

Хрупкость стекла - это его возможность сопротивляться удару. При испытании на хрупкость на образец стекла сбрасывают эталонный стальной шар либо бьют его маятником. В обоих случаях прочность определяют работой, затраченной на разрушение образцов.

Режем...

Резку стекла выполняют алмазным или твердосплавким стеклорезом. Алмазный - тот, в оправу которого вставлено зерно алмаза таким образом, чтобы оно имело два угла - тупой и острый. Острый при резке должен двигаться вперед, тогда алмаз свободно скользит по стеклу, не задерживаясь на имеющихся на стекле неровностях. Если же вести алмаз тупым углом вперед, зерно быстро выпадет или сойдет в сторону со своего места. Чтобы при резке стекла не приходилось постоянно пользоваться транспортиром, замеряя угол наклона алмаза, на оправе стеклореза делают особую метку, которая при резке всегда должна быть обращена к линейке.

Но какой бы твердый не был алмаз, и он со временем тупится. Тогда приходится обращаться за помощью к ювелиру (или часовщику), чтобы он перевернул зерно на другую грань.

Твердосплавкий стеклорез обычно бывает трехроликовым. Ролики и есть режущая часть. Каждый из них рассчитан на резку 350 погонных метров стекла. После сильного затупления ролик точат на специальном бруске с алмазной пылью или электроточиле.

Различные фигуры из стекла можно вырезать самодельным "карандашом-стеклорезом", сделанным из древесного угля. Уголь растирают в ступке в мелкий порошок и замешивают его в гуммиарабике (вязкая прозрачная жидкость, выделяемая некоторыми видами акаций; растворяется в воде, образуя клейкий раствор). Полученное густое тесто раскатывают в крупные палочки и хорошо их просушивают.

Непосредственно перед резкой край стекла надпиливают трехгранным напильником. Затем зажигают карандаш с одного конца и касаются им надпиленного края стекла. Горячим кончиком карандаша ведут в нужном направлении. По образовавшимся трещинам стекло легко лопается.

Сверлим...

Стекла, как и люди, стареют - со временем увеличивается их хрупкость. Поэтому при работе со старыми стеклами их сначала надо промыть, просушить, протереть тряпкой, чуть смоченной скипидаром, и снова просушить, защитив от пыли.

Отверстия в стекле лучше всего делать с помощью ручной дрели, так как при работе электроинструментом стекло в месте сверления сильно нагревается.

Сверла используют в основном алмазные. Центр сверления намечают "крестиком" с помощью стеклореза. Роль смазки выполняет технический скипидар, в котором разведена канифоль. Первую каплю этого раствора наносят на "крестик", а затем постепенно добавляют уже при сверлении, так чтобы углубление всегда было заполнено смазкой.

После просверливания на 0,7-0,8 толщины, когда острие почти выходит на другую сторону, стекло переворачивают. Легким ударом острия сверла вводят его в просверленный конус и продолжают работу "до победного конца" уже с другой стороны. Такая "хитрость" позволяет избежать трещин, получения неровных краев отверстия, а также уменьшить его конусность. Существуют и другие способы сверления стекла.

Делаем витраж.

Традиционная технология изготовления витражей сложна, дорога, и под силу лишь опытным мастерам-художникам. Но если у вас "руки растут откуда надо", то украсить дверь самодельным витражом из битого стекла на силикатном клее будет вполне под силу. Сначала разрабатывают рисунок будущего "произведения" (выполняют на листе бумаги в натуральную величину и в цвете). Затем наклеивают его с обратной стороны стекла, на котором будет выполняться витраж, "лицом" вниз.

После этого тонкой кистью с быстросохнущей краской черного, темно-синего или темно-коричневого цвета наносят контуры изображения. Цветное стекло для витража можно получить из подручного материала (зеленое и коричневое - из разбитых бутылок, красное - из светофильтров либо от автомобильных фар и т.д.). Подобранные по цвету стекла разбиваются на осколки до размера, необходимого для выполнения декоративного орнамента. Стекла с наклеенным рисунком укладывают в горизонтальное положение на ровное основание лицевой стороной вверх и протирают нашатырным спиртом.

На подготовленную таким образом поверхность наносят слой силикатного клея и выкладывают мозаику. Через 4-6 часов поверхность витража заливают сплошным слоем клея таким образом, чтобы он покрывал все выступающие осколки. Клей сглаживает все шероховатости витража, поверхность становится волнистой, блестящей, хорошо видна на просвет.

Раскрашиваем...

"Морозные узоры" на стекле получают с помощью столярного клея. Для этого стеклу сначала придают матовость, обрабатывая песком вручную или пескоструйным аппаратом. На матовую поверхность наносят двух-трехмиллиметровый слой горячего крепкого раствора столярного клея. Высыхая, клей отрывает тонкую пленку стекла, которая легко снимается щеткой.

Многослойное стекло.

ОБЛАСТЬ ПРИМЕНЕНИЯ: целесообразно использовать в качестве стекол, защищающих от взлома, от пуль, от огня и шума, для защиты человека от различных травм, а также для изготовления изолирующих стеклопакетов.

Многослойным или ламинированным называется стекло, состоящее из двух или более слоев, "склеенных" вместе с помощью пленки или ламинирующей жидкости. Слои могут быть: выполненные из стекла одного или различных типов, прямые или гнутые в соответствии с заданной формой (форму им придают до склейки).

Процесс ламинирования сложный, выполняется с помощью автоматизированной линии в несколько стадий. Последний этап проводится в автоклаве под воздействием тепла и давления. Ламинирование не увеличивает механическую прочность стекла, но делает его "безопасным" - при разрушении осколки не разлетаются во все стороны, а остаются "висеть" на эластичной пленке. Кроме того, такие стекла (целые, разумеется) хорошо защищают и от ультрафиолетового излучения. Ламинированные стекла продают как в виде больших пластин, из которых нарезают полотна требуемого размера, так и в виде готовых изделий определенных форм и размеров.

Оконное стекло.

ОБЛАСТЬ ПРИМЕНЕНИЯ: остекление окон, витражей, балконных дверей, световых фонарей, теплиц, оранжерей и других светопрозрачных ограждающих конструкций жилых зданий и промышленных сооружений.

Качественные листы оконного стекла прозрачны и бесцветны - никаких радужных и матовых пятен, несмываемых налетов, и других следов выщелачивания на поверхности! Допускаются зеленоватый и голубоватый оттенки, но при условии, что они не снижают коэффициента светопропускания (соотношения двух световых потоков - прошедшего через лист стекла к падающему на этот же лист).

Прочность стекла зависит от нескольких составляющих: способа выработки и обработки поверхностей и торцов, однородности, степени отжига или закалки, состояния поверхности листа и его размеров. Выбирая стекло, помните, что появившиеся в процессе изготовления на поверхностях листа и в его объеме микротрещины и неоднородности снижают прочность примерно в 100 раз. Внимательно осмотрите кромки, они должны быть ровными, а углы целыми. Даже небольшие сколы и зазубрины по кромкам станут концентраторами напряжения, такое стекло - не жилец. Наличие маленьких дефектов (пузырей, инородных включений, царапин и так далее) возможно, но регламентируются специальными стандартами.

Для обычного оконного остекления чаще применяют листы толщиной 2,5-4 мм. Для больших же окон и витражей они не годятся, не выносят ветровой нагрузки. В таких случаях следует устанавливать более толстое стекло - 6 или даже 10 мм. Причем чем выше расположено большое окно, тем толще должно быть стекло и тем меньше площадь его листа.

И еще одна важная вещь. Хотя свойства стекла мало зависят от направления его резки, все же желательно размечать длинную сторону оконного стекла параллельно длинной стороне раскраиваемого листа. Оформляя заказ, имейте это в виду. Кстати, нарезка стекла удорожает его стоимость примерно на 30 процентов.

Солнцезащитное стекло.

ОБЛАСТЬ ПРИМЕНЕНИЯ: остекление окон, а также солнцезащитных устройств - козырьков, вертикальных экранов и т.д. Наиболее уместно применение в зданиях с активным использованием кондиционеров.

Солнцезащитные стекла либо отражают либо поглощают излучение. Теплопоглощающие получают введением в стекломассу специальных добавок, окрашивающих ее в зеленовато-голубоватые или серые тона. Такие стекла пропускают 65-75 процентов света, а инфракрасных лучей - всего 30-35 процентов, причем их способность пропускать и поглощать лучи (при едином химическом составе) зависит от толщины листа.

При высоком коэффициенте поглощения света "темные" теплопоглощающие стекла могут сильно нагреваться (на 50-70 градусов выше окружающей среды), поэтому их не рекомендуется использовать в наружном остеклении. Их также нежелательно подвергать неравномерному нагреву или охлаждению. Второй вид стекол, которые призваны защищать от солнца, - с прозрачными для видимых лучей спектра тонкими окиснометаллическими, керамическими или полимерными покрытиями. Покрытия эти наносят на одну из поверхностей обычного бесцветного стекла. Такие стекла тоже поглощают часть инфракрасного солнечного излучения, но нагреваются значительно меньше, а их светотехнические характеристики мало зависят от толщины листа.

Благодаря солнцезащитным стеклам летом в помещении не так жарко, контрастность и яркость освещаемых предметов меньше. В результате снижается утомляемость глаз, люди меньше устают. Однако от прямых солнечных лучей такие стекла не защищают (яркость солнечного диска остается слишком высокой), так что от жалюзи или штор отказываться не надо.

Приобретая солнцезащитное стекло, учтите: искажение цветов просматриваемых через него предметов должно быть минимальным.

Теплосберегающее стекло (энергосберегающее).

ОБЛАСТЬ ПРИМЕНЕНИЯ: используются в основном при производстве стеклопакетов.

Если Вы покупаете газовую или обычную электрическую плиту, обратите внимание на фиксацию крышки панели конфорок. Очень удобно и безопасно, когда Вы можете оставить крышку плиты в любом положении (под любым углом наклона). Это достигается путем специальной балансировки шарниров.

Выпускаются стекла как с "твердыми" покрытиями - К-стекло, и с так называемыми "мягкими" - i-стекло. В отличие от "мягкого" покрытия "твердые" имеют неотъемлемую слабую поверхностную дымку, особенно заметную при ярком освещении. Окно с таким стеклом выглядит как вымытое грязной водой.

Такие стекла наиболее часто применяются в современных ПВХ-окнах, ощутимо экономя энергию. Например, при наружной температуре -26 градусов и температуре в помещении +20, температура на поверхности стекла внутри помещения будет +5,1 - у обычного стеклопакета, +11 - у стеклопакета с К-стеклом, +14 - с i-стеклом.

Узорчатое стекло.

ОБЛАСТЬ ПРИМЕНЕНИЯ: остекление оконных и дверных проемов, устройство перегородок в жилых, общественных и промышленных зданиях. Не рекомендуется применять узорчатое стекло в помещениях с большим количеством пыли, копоти и т.п.

Узорчатое листовое стекло имеет на одной или обеих поверхностях четкий рельефный повторяющийся рисунок и бывает как бесцветным, так и цветным. Цветное получают из окрашенного "в массе стекла" или нанесением на одну из поверхностей бесцветных окиснометаллических покрытий.

Это декоративный материал. Наружные и внутренние витражи, ширмы, перегородки из него в фойе, вестибюлях, залах кафе получаются великолепные. А вот "выгораживать" узорчатым стеклом помещения для конфиденциальных разговоров не стоит. Узорчатое, как и обычное или цветное стекло - не преграда для любителей подслушивать.

Цвет и рисунок поверхности стекла должен соответствовать утвержденным эталонам. Глубина рельефных линий - от 0,5 до 1,5 мм. Узорчатое стекло должно пропускать и рассеивать свет. Коэффициент светопропускания бесцветного варианта при освещении рассеянным светом, если узоры нанесены только на одной стороне - не менее 0,75, если узоры на двух сторонах - 0,7. Светопропускание цветных узорчатых стекол определяется составом, цветом стекла и покрытий и составляет 30-65%.

Закаленное стекло.

ОБЛАСТЬ ПРИМЕНЕНИЯ: остекление окон и перегородок, дверей, ограждений балконов, лестничних маршей и т.д., а также при производстве изолирующих стеклопакетов или ламинированных стекол.

Закаленные стекла изготавливают из листов неполированного, полированного или узорчатого стекла на специальных закалочных установках. При необходимости в стекле предварительно делают требуемые вырезы, отверстия, обрабатывают кромки, потому что готовые закаленные стекла нельзя резать, сверлить и подвергать другим видам механической обработки.

Закалка стекла в некотором роде похожа на закалку стали. Сначала его разогревают выше температуры размягчения, а затем быстро охлаждают в струях воздуха. При охлаждении первыми затвердевают поверхностные слои стекла. В них при остывании внутренних слоев возникают остаточные напряжения сжатия. Эти-то напряжения и обеспечивают механическую прочность и термостойкость стекла.

Прочность закаленного стекла на изгиб и удар в 5-6 раз больше прочности обычного стекла, при этом и термическая стойкость его существенно выше. Разбитое закаленное стекло распадается на мелкие острые осколки. Причем это регламентированно требованиям стандартов качества - при контрольном разрушении острым молоточком массой 75 граммов закаленные стекла должны иметь не менее 40 осколков в квадрате размерами 50х50 мм или 160 осколков в квадрате 100х100 мм.

Наиболее уязвимым местом закаленного стекла являются его кромки. При монтаже конструкций необходимо оберегать его торцы от ударов, царапин и других повреждений.

Светопропускание прозрачного закаленного стекла составляет не менее 84 процентов.

Армированное стекло.

ОБЛАСТЬ ПРИМЕНЕНИЯ: остекление окон, световых фонарей, перегородок в производственных, общественных и жилых зданиях, для устройства балконных ограждений. Армирование стекла производят так: в середину листа параллельно его поверхности в процессе изготовления помещают металлическую сетку с квадратными ячейками.

Сетку применяют сварную из стальной проволоки, а для стекла высшей категории качества - еще и с защитным алюминиевым покрытием. Сторона квадратной ячейки составляет 12,5 или 25 мм. Сетка должна быть расположена по всей площади листа на расстоянии не менее 1,5 мм от поверхности стекла. В результате получается светопропускающий материал, обладающий повышенной безопасностью и огнестойкостью.

Здесь надо внести ясность. Армирование не увеличивает механическую прочность стекла и даже снижает его примерно в 1,5 раза. От воров оно тоже не спасет. Зато наличие сетки не позволит осколкам разлетаться и выпадать из переплетов, если, например, в него влетит мяч или камень. Качественное армированное стекло должно отламываться по линии надреза, не растрескиваясь. Если в нем много пузырей - это брак.

Одна из поверхностей "армостекла" может быть узорчатой или рифленой. Есть и цветное армированное стекло, изготовляется оно из стекломассы, окрашенной окислами металлов. Наиболее распространены цвета - золотисто-желтый, зеленый, лилово-розовый, голубой.

Работать с армированным стеклом в домашних условиях довольно сложно (трудно отколоть маленькие кусочки), но можно. Нарезают его обычным способом, потом отделяют куски друг от друга, а выступающие по краям кончики проволоки "откусывают" плоскогубцами. Проволока тонкая и отламывается легко.

Крепить армированное стекло лучше всего в переплетах сплошными штапиками со всех четырех сторон листа через резиновые прокладки или на замазке (мастике).