Динамический диапазон интенсивности изображения 8 бит. Телевизоры с HDR. Что такое HDR в телевизоре. Обработка одного фото, или создание «псевдо-HDR»

16 ноября 2009 года

Видеокамеры с широким динамическим диапазоном

Видеокамеры с широким динамическим диапазоном (WDR) предназначены для обеспечения качественного изображения при встречной засветке и наличии в кадре как очень ярких, так и очень темных областей и деталей. При этом яркие области не насыщаются, а темные не отображаются слишком темными. Такие камеры обычно рекомендуются для организации наблюдения за объектом, находящимся напротив окон, в освещенном сзади проеме двери или ворот, а также при большом контрасте объектов.

Динамический диапазон видеокамеры обычно определяется как отношение самого яркого фрагмента изображения к самому темному фрагменту того же самого изображения, то есть в пределах одного кадра. Это отношение по-другому называется максимальным контрастом изображения.

Проблема динамического диапазона

К сожалению, реальный динамический диапазон видеокамер строго ограничен. Он существенно у"же динамического диапазона большинства реальных объектов, ландшафтов и даже сцен кино и фотографии. Кроме того, условия применения видеокамер наблюдения в части освещения зачастую далеки от оптимальных. Так, интересующие нас объекты могут быть расположены на фоне ярко освещенных стен и предметов или встречного (контро-вого) света. В этом случае объекты или их детали на изображении будут слишком темными, так как видеокамера автоматически адаптируется к высокой средней яркости кадра. В некоторых ситуациях на наблюдаемой "картинке" могут иметь место яркие пятна со слишком большими градациями яркости, которые трудно передаются стандартными камерами. Например, обычная улица при солнечном освещении и с тенями от домов имеет контраст от 300:1 до 500:1, для темных пролетов арок или ворот с освещенным солнцем фоном контраст достигает 10 000:1, внутренность темной комнаты против окон имеет контраст до 100 000:1.

Ширина результирующего динамического диапазона ограничивается несколькими факторами: диапазонами самого датчика (фотоприемника), обрабатывающего процессора (DSP) и дисплея (видеоконтрольного устройства). Типовые CCD (ПЗС-матрицы) имеют максимальный контраст не более 1000:1 (60 дБ) по интенсивности. Самый темный сигнал ограничен тепловым шумом или "темновым током" датчика. Самый яркий сигнал ограничен суммой заряда, который может быть накоплен в отдельном пикселе. Обычно CCD построены так, что этот заряд составляет приблизительно 1000 темновых зарядов, обусловленных температурой CCD.

Динамический диапазон может быть существенно увеличен для специального применения камер, например для научных или астрономических исследований, путем охлаждения CCD и применения специальных систем считывания и обработки. Однако такие методы, будучи очень дорогими, не могут использоваться широко.

Как указывалось выше, множество задач требует размера динамического диапазона 65-75 дБ (1:1800-1:5600), поэтому при отображении сцены даже с диапазоном в 60 дБ детали в темных областях потеряются в шуме, а детали в ярких областях — из-за насыщения, либо диапазон будет обрезан сразу с двух сторон. Системы считывания, аналоговые усилители и аналого-цифровые преобразователи (АЦП) для видеосигнала в режиме реального времени ограничивают сигнал CCD до динамического диапазона в 8 бит (48 дБ). Такой диапазон может быть расширен до 10-14 бит за счет использования соответствующих АЦП и обработки аналогового сигнала. Однако зачастую это решение оказывается непрактичным.

Другой альтернативный тип схемы использует нелинейное преобразование в виде логарифмической функции или ее аппроксимации для сжатия 60 дБ выходного сигнала CCD до диапазона в 8 бит. Обычно такие методы подавляют детали изображения.

Последний (указанный выше) фактор ограничения — вывод картинки на дисплей. Динамический диапазон для нормального CRT-монитора, работающего в освещенной комнате, составляет около 100 (40 дБ). LCD-монитор еще более "ограничен". Сигнал, сформированный видеотрактом и даже ограниченный до контраста 1:200, будет уменьшен в динамическом диапазоне при показе. Чтобы оптимизировать показ, пользователь часто должен регулировать контраст и яркость монитора. И если он хочет получить изображение с максимальным контрастом, придется пожертвовать частью динамического диапазона.

Типовые решения

Имеются два основных технологических решения, которые используются, чтобы обеспечить видеокамеры расширенным динамическим диапазоном:

  • множественное отображение кадра — видеокамера захватывает несколько полных изображений или его отдельных областей. При этом каждая "картинка" отображает различную область динамического диапазона. После чего камера объединяет эти различные изображения, чтобы воспроизвести единое изображение с расширенным динамическим диапазоном (WDR);
  • использование нелинейных, обычно логарифмических, датчиков — в этом случае степень чувствительности при различных уровнях освещения различна, что позволяет обеспечить широкий динамический диапазон яркости изображения в одном кадре.

Применяются разные комбинации этих двух технологий, но наиболее распространенная — первая.

Для получения одного оптимального изображения из нескольких используется 2 метода:

  • параллельное отображение двумя или более датчиками изображения, сформированного общей оптической системой. В этом случае каждый датчик захватывает различную часть динамического диапазона сцены за счет различного времени экспонирования (накопления), различного оптического ослабления в индивидуальном оптическом тракте или за счет использования датчиков различной чувствительности;
  • последовательное отображение изображения единственным датчиком с различными временами экспонирования (накопления). В крайнем случае производится по крайней мере два отображения: одно с максимальным, а другое — с более коротким временем накопления.

Последовательное отображение, как наиболее простое решение, обычно используется в промышленности. Длительное накопление обеспечивает видимость наиболее темных частей объекта, однако самые яркие фрагменты могут не прорабатываться и даже приводить к насыщению фотоприемника. Картинка, получаемая с малым накоплением, адекватно отображает светлые фрагменты изображения, не прорабатывая темные области, находящиеся на уровне шума. Сигнальный процессор изображения камеры объединяет обе картинки, беря яркие части от "короткой", а темные части от "длительной" картинки. Алгоритм комбинации, позволяющий создавать гладкое изображение без шва, достаточно сложен, и мы не будем здесь его касаться.

Первыми представила концепцию объединения двух цифровых изображений, полученных при разном времени накопления, в единое изображение с широким динамическим диапазоном группа разработчиков во главе с профессором И.И. Зиви из компании "Tech-nion", Израиль. В 1988 г. концепция была запатентована ("Камера широкого динамического диапазона" Y.Y. Zeevi, R. Ginosar и O. Hilsenrath), а в 1993 г. ее применили при создании коммерческой медицинской видеокамеры.


Современные технические решения

В современных камерах для расширения динамического диапазона на основе получения двух изображений в основном применяются матрицы Sony двойного сканирования (Double Scan CCD) ICX 212 (NTSC), ICX213 (PAL) и специальные процессоры для обработки изображения, например SS-2WD или SS-3WD. Примечательно, что такие матрицы невозможно обнаружить в ассортименте SONY и не все производители указывают на их использование. На рис. 1 схематически представлен принцип двойного накопления. Время указано по формату NTSC.

Из диаграмм видно, что если типовая камера накапливает поле 1/60 с (PAL-1/50 с), то камера WDR составляет поле из двух изображений, полученных путем накопления, за 1/120 с (PAL-1/100 с) для мало освещенных деталей и за период от 1/120 до 1/4000 с для сильно освещенных деталей. На фото 1 представлены кадры с разным экспонированием и результат суммирования (обработки) режима WDR.

Эта технология позволяет "довести" динамический диапазон до 60-65 дБ. К сожалению, числовые значения WDR, как правило, приводятся только производителями верхней ценовой категории, остальные же ограничиваются информацией о наличии функции. Имеющаяся регулировка градуирована обычно в относительных единицах. На фото 2 представлен пример сравнительной отработки типовой и камерой WDR встречного света от стеклянной витрины и дверей. Встречаются модели телекамер, в документации на которые указано, что они работают в режиме WDR, но нет упоминания о требуемой специальной элементной базе. В этом случае, естественно, может возникать вопрос, является ли заявленный режим WDR таким, каким мы ожидаем? Вопрос справедлив, поскольку даже в сотовых телефонах уже применяется режим авторегулирования яркости изображения встроенного фотоаппарата, называемый WDR. С другой стороны, встречаются модели с заявленным режимом расширения динамического диапазона, названным как Easy Wide-D или EDR, которые работают с типовыми CCD. Если в данном случае указывается величина расширения, то она не превышает 20-26 дБ. Одним из способов расширения динамического диапазона является применяемая сейчас компанией Panasonic технология Super Dinamic III. Она также основана на двойном экспонировании кадра за 1/60 с (1/50С-PAL) и 1/8000 с (с последующим анализом гистограмм, разделением картинки на четыре варианта с различной гамма-коррекцией и их интеллектуальным суммированием в DSP). На рис. 2 представлена обобщенная структура этой технологии. Подобная система расширяет динамический диапазон до 128 раз (на 42 дБ).

Наиболее перспективной технологией расширения динамического диапазона телекамеры на сегодня является технология Digital Pixel System™ (DPS), разработанная в Стен-фордском университете в 1990-х гг. и запатентованная компанией PIXIM Inc. Основным нововведением для DPS является использование AЦП для переведения величины фотозаряда в ее цифровое значение непосредственно в каждом пикселе сенсора. CMOS(КМОП)-матрицы сенсора препятствуют ухудшению качества сигнала, что увеличивает общее отношение сигнал/шум. Технология DPS позволяет вести обработку сигнала в режиме реального времени.

Технология PIXIM использует метод, известный как мультисемплинг (многократная выборка), что позволяет сформировать изображение высочайшего качества и обеспечить широкий динамический диапазон преобразователя (свет/сигнал). В технологии PIXIM DPS используется пятиуровневый мультисемплинг, это позволяет получать сигнал от сенсора с одним из пяти значений экспозиции. Во время экспонирования производится измерение величины освещенности каждого пикселя кадра (для стандартного видеосигнала — 50 раз в секунду). Система обработки изображения определяет оптимальное время экспонирования и сохраняет полученное значение до того, как произойдет перенасыщение пикселя и прекратится дальнейшее накопление заряда. Рис. 3 поясняет принцип адаптивного накопления. Значение светлого пикселя сохранено при времени экспонирования Т3 (перед насыщением пикселя на 100%). Темный пиксель накапливал заряд более медленно, что требовало дополнительного времени, его значение сохранено при времени Т6. Сохраненные значения (интенсивность, время, уровень шума), измеренные в каждом пикселе, одновременно обрабатываются и преобразуются в высококачественное изображение. Поскольку у каждого пикселя есть свой встроенный АЦП и параметры освещенности измерены и обработаны независимо, то каждый пиксель в действительности действует как отдельная камера.


Системы формирования изображения PIXIM, основанные на технологии DPS, состоят из цифрового сенсора изображения и процессора обработки изображения. В современных цифровых сенсорах используется квантование в 14 и даже в 17 бит. Относительно невысокая чувствительность, как основной недостаток CMOS-технологии, характерна и для DPS. Типовая чувствительность камер этой технологии ~1 лк. Типовое значение отношения сигнал/шум для формата 1/3" составляет 48-50 дБ. Заявляемый максимальный динамический диапазон — до 120 дБ с типовым значением 90-95 дБ. Возможность регулирования времени накопления для каждого пикселя матрицы сенсора позволяет при формировании изображения использовать такой уникальный метод обработки сигнала, как метод выравнивания локальных гистограмм, позволяющий резко повысить информативность изображения. Технология позволяет полностью компенсировать засветку фона, выделить детали, оценить пространственное положение объектов и деталей, находящихся не только на переднем, но и на заднем плане изображения. На фото 3, 4 и 5 приведены кадры, полученные типовой CCD-камерой и камерой PIXIM.

Практика

Итак, можно сделать вывод о том, что сегодня при необходимости вести видеонаблюдение в сложных условиях высококонтрастного освещения можно подобрать телекамеру, достаточно адекватно передающую весь диапазон яркости объектов. Для этого наиболее предпочтительно использование видеокамер с технологией PIXIM. Довольно хорошие результаты обеспечивают системы на основе двойного сканирования. Как компромисс можно рассматривать дешевые телекамеры на основе типовых матриц и электронных систем EWD и многозонной BLC. Естественно, желательно использовать оборудование с оговоренными величинами характеристик, а не только с упоминанием наличия того или иного режима. К сожалению, на практике результаты работы конкретных моделей не всегда соответствуют ожиданиям и рекламным заявлениям. Но это тема для отдельного разговора.

Этой статьёй мы начинаем серию публикаций о весьма интересном направлении в фотографии: High Dynamic Range (HDR) — фотографии с высоким динамическим диапазоном. Начнём, конечно же, с азов: разберёмся с тем, что такое HDR-изображения и как правильно их снимать, учитывая ограниченные возможности наших камер, мониторов, принтеров и т.д.

Давайте начнем с основного определения Динамического диапазона.

Динамический диапазон определяется отношением темных и ярких элементов, которые важны для восприятия вашей фотографии (измеряется уровнем яркости).

Это не абсолютный диапазон, так как он, во многом, зависит от ваших личных предпочтений и того, какого результата вы хотите добиться.

Например, есть множество замечательных фотографий с очень насыщенными тенями, без каких-либо деталей в них; в этом случае можно говорить о том, что на такой фотографии представлена только нижняя часть динамического диапазона сцены.

  • ДД снимаемой сцены
  • ДД фотокамеры
  • ДД устройства вывода изображения (монитор, принтер и т.д.)
  • ДД человеческого зрения

Во время фотосъёмки ДД трансформируется дважды:

  • ДД снимаемой сцены > ДД устройства захвата изображения (здесь мы подразумеваем под ним фотокамеру)
  • ДД устройства захвата изображения > ДД устройства вывода изображения (монитор, фотоотпечаток и т.д.)

Следует помнить, что любая деталь, которая будет потеряна на этапе захвата изображения – никогда не сможет быть восстановлена в последующем (это мы рассмотрим подробнее чуть позже). Но, в конце концов, важно лишь то, чтобы полученное изображение, отображаемое монитором, или распечатанное на бумаге радовало ваш взгляд.

Типы динамического диапазона

Динамический диапазон снимаемой сцены

Какие из самых ярких и самых темных деталей сцены вы хотели бы запечатлеть? Ответ на этот вопрос полностью зависит только от вашего творческого решения. Вероятно, лучший способ усвоить это – рассмотреть несколько кадров, в качестве образца.

Например, на фотографии выше, нам хотелось запечатлеть детали как внутри помещения, так и за его пределами.

На этой фотографии, мы также хотим показать детали и в светлых и в тёмных областях. Однако, в этом случае детали в светлых областях нам более важны, чем детали в тенях. Дело в том, что области светов, как правило, хуже всего смотрятся при фотопечати (зачастую, они могут выглядеть как простая белая бумага, на которой и распечатан снимок).

В подобных сценах динамический диапазон (контрастность) может достигать значения 1:30 000 и более – особенно, если вы снимаете в тёмной комнате с окнами, через которые проникает яркий свет.

В конечном счете, HDR-фотография в подобных условиях – оптимальный вариант для получения снимка, радующего ваш взор.

Динамический диапазон фотокамеры

Если бы наши камеры были способны запечатлеть высокий динамический диапазон сцены за 1 снимок, мы бы не нуждались в методах, описанных в этой и последующих статьях, посвященных HDR. К сожалению, суровая действительность такова, что динамический диапазон фотокамер значительно ниже, чем во многих сценах, для съёмки которых они используются.

Как определяется динамический диапазон фотокамеры?

ДД камеры измеряется от самых ярких деталей кадра до деталей теней, превышающих уровень шума.

Ключевым моментом в определении динамического диапазона камеры является то, что мы измеряем его от видимых деталей области светов (необязательно и не всегда чисто белых), до деталей теней, чётко различимых и не теряющихся среди большого количества шума.

  • Стандартная современная цифровая зеркальная камера может охватить диапазон в 7-10 стопов (в диапазоне от 1:128 до 1:1000). Но не стоит быть чересчур оптимистичным и доверять только цифрам. Некоторые фотографии, несмотря на присутствие внушительного количества шумов на них, в большом формате смотрятся великолепно, другие же – теряют свою привлекательность. Всё зависит от вашего восприятия. Ну и, конечно, размер печати или отображения вашего фото также имеет значение
  • Диапозитивная фотоплёнка способна охватить диапазон в 6-7 стопов
  • Динамический диапазон негативной плёнки составляет около 10-12 стопов
  • Функция восстановления светов в некоторых RAW-конвертерах может помочь получить дополнительно до +1 стопа.

За последнее время технологии, применяемые в зеркалках шагнули далеко вперёд, но ожидать чудес, всё же, не следует. На рынке можно отыскать не так много камер, способных захватить широкий (по сравнению с другими камерами) динамический диапазон. Ярким примером может служить Fuji FinePixS5 (в настоящее время не выпускается), матрица которой имела двухслойные фотоэлементы, что позволило увеличить ДД, доступный S5 на 2 стопа.

Динамический диапазон устройства вывода изображения

Из всех этапов цифровой фотографии, вывод изображения, как правило, демонстрирует самый низкий динамический диапазон.

  • Статический динамический диапазон современных мониторов варьируется в пределах от 1:300 до 1:1000
  • Динамический диапазон HDR-мониторов может доходить до 1:30000 (просмотр изображения на таком мониторе может вызвать ощутимый дискомфорт для глаз)
  • Динамический диапазон фотопечати большинства глянцевых журналов составляет около 1:200
  • Динамический диапазон фотоотпечатка на качественной матовой бумаге не превышает 1:100

У вас вполне резонно может возникнуть вопрос: зачем при съёмке стараться захватить большой динамический диапазон, если ДД устройств вывода изображения настолько ограничен? Ответ заключается в компрессии динамического диапазона (как вы узнаете далее, тональное отображение также связана с этим).

Важные аспекты человеческого зрения

Поскольку свои работы вы демонстрируете другим людям, вам будет небесполезным усвоить некоторые основные аспекты восприятия окружающего мира человеческим глазом.

Человеческое зрение работает не так, как наши фотокамеры. Все мы знаем, что наши глаза адаптируются к освещению: в темноте зрачки расширяются, а при ярком свете – сужаются. Обычно, этот процесс занимает достаточно продолжительное время (он вовсе не моментальный). Благодаря этому, без специальной подготовки, наши глаза могут охватить динамический диапазон в 10 стопов, а в целом нам доступен диапазон около 24 стопов.

Контраст

Все детали, доступные нашему зрению, базируются не на абсолютной насыщенности тона, а на основе контрастов контуров изображения. Человеческие глаза очень чувствительны даже к самым незначительным изменениям контрастности. Вот почему концепция контрастности столь важна.

Общий контраст

Общий контраст определяется перепадом яркости между самыми темными и самыми светлыми элементами изображения в целом. Такие инструменты, как Кривые (Curves) и Уровни (Levels) изменяют только общий контраст, поскольку все пиксели с одним уровнем яркости они обрабатывают одинаково.

В общем контрасте выделяют три основных области:

  • Средние тона
  • Света

Совокупность контрастов этих трёх областей определяет общий контраст. Это означает, что если вы увеличите контрастность средних тонов (что бывает очень часто), вы потеряете общий контраст в области светов/теней при любом способе вывода изображения, зависящего от общего контраста (например, при печати на глянцевой бумаге).

Средние тона, как правило, отображают основной предмет съёмки. Если уменьшить контрастность области средних тонов, то ваше изображение будет блеклым. И, наоборот, при увеличении контрастности средних тонов, тени и света станут менее контрастными. Как вы увидите чуть ниже, изменение локального контраста может улучшить общее отображение вашей фотографии.

Локальный Контраст

Следующий пример поможет понять концепцию локального контраста.

Круги, расположенные друг напротив друга, в каждой из строк имеют абсолютно идентичные уровни яркости. Но правый верхний круг выглядит намного ярче, чем тот, что слева. Почему? Наши глаза видят разницу между ним и окружающим его фоном. Правый выглядит ярче на тёмно-сером фоне, по сравнению с таким же кругом, размещённом на более светлом фоне. Для двух кругов же, расположенных ниже, верно обратное.

Для наших глаз абсолютная яркость представляет меньший интерес, чем её отношение к яркости близлежащих объектов.

Такие инструменты, как Заполняющий свет (FillLight) и Резкость (Sharpening) в Lightroom, и Тени/Света (Shadows/Highlights) в Photoshop действуют локально и не охватывают сразу все пиксели одинакового уровня яркости.

Dodge (Затемнить) и Burn (Осветлить) – классические инструменты для изменения локального контраста изображения. Dodge&Burn – это по-прежнему один из оптимальных методов улучшения изображения, потому, что наши собственные глаза, естественно, неплохо могут судить о том, как та или иная фотография будет выглядеть в глазах стороннего зрителя.

HDR: управление динамическим диапазоном

Еще раз вернёмся к вопросу: для чего же тратить усилия и снимать сцены с динамическим диапазоном шире, чем ДД вашей камеры или принтера? Ответ заключается в том, что мы можем сделать кадр с высоким динамическим диапазоном и позже вывести его изображение через устройство с меньшим ДД. В чём суть? А суть в том, что в ходе этого процесса вы не потеряете никакой информации о деталях изображения.

Конечно, проблему съёмки сцен с высоким динамическим диапазоном можно решить и другими путями:

  • Например, некоторые фотографы просто ждать пасмурную погоду, и не фотография вовсе, когда ДД сцены слишком высок
  • Использовать заполняющую вспышку (при пейзажной фотосъёмке этот способ неприменим)

Но во время длительного (или не очень) путешествия вы должны иметь максимум возможностей для фотосъёмки, так что нам с вами следует найти более эффективные решения.

К тому же окружающее освещение может зависеть не только от погоды. Для лучшего понимания этого, давайте вновь рассмотрим несколько примеров.

Фото выше весьма тёмное, но, несмотря на это, на нём запечатлён невероятно широкий динамический диапазон света (было снято 5 кадров с шагом в 2 стопа).

На этой фотографии свет, падающий из окон справа был весьма ярким, по сравнению с тёмным помещением (в нём не было источников искусственного освещения).

Так что ваша первая задача – запечатлеть на камеру полный динамический диапазон сцены, исключив потерю каких-либо данных.

Отображение динамического диапазона. Сцена с низким ДД

Давайте, по традиции, сначала посмотрим на схему фотосъёмки сцены с низким ДД:

В рассматриваемом случае при помощи камеры мы можем охватить динамический диапазон сцены за 1 кадр. Незначительные потери деталей в области теней, как правило, не являются существенной проблемой.

Процесс отображение на этапе: фотокамера – устройство вывода, в основном, осуществляется с помощью тональных кривых (обычно, сжимающих света и тени). Вот основные инструменты, которые для этого используются:

  • При конвертации RAW: отображение линейной тональности камеры через тональные кривые
  • Инструменты Photoshop: Curvesи Levels
  • Инструменты Dodge и Burn в Lightroom и Photoshop

Примечание: во времена плёночной фотографии. Негативы увеличивали и печатали на бумаге различных классов (или на универсальной). Различие классов фотобумаги заключалось в контрасте, который они могли воспроизвести. Это классический метод тонального отображения. Тональное отображение – может звучать, как что-то новое, но это далеко не так. Ведь только на заре фотографии схема отображения снимка выглядела: сцена – устройство вывода изображения. С тех пор последовательность остаётся неизменной:

Сцена > Захват изображения > Вывод изображения

Отображение динамического диапазона. Сцена с более высоким ДД

Теперь давайте рассмотрим ситуацию, когда мы снимаем сцену с более высоким динамическим диапазоном:

Вот пример того, что вы можете получить в результате:

Как мы видим, камера может захватить только часть динамического диапазона сцены. Ранее мы уже отмечали, что потеря деталей в области светов – редко допустима. Это означает, что нам необходимо изменить экспозицию для того, чтобы защитить область светов от потери деталей (конечно, необращая внимание на зеркальные блики, например, отражений). В результате мы получим следующее:

Теперь мы получили существенную потерю деталей в области теней. Возможно, в некоторых случаях это может выглядеть достаточно эстетично, но только не тогда, когда вы хотите отобразить на фото и более тёмные детали.

Ниже приведен пример того, как может выглядеть фотография, при уменьшении экспозиции для сохранения деталей в области светов:

Захват высокого динамического диапазона при помощи брекетинга экспозиции.

Так как же вы можете захватить весь динамический диапазон при помощи камеры? В этом случае решением будет Брекетинг экспозиции: съёмка нескольких кадров с последовательным изменением уровнем экспозиции (EV) так, чтобы эти экспозиции частично перекрывали друг друга:

В процессе создания HDR-фотографии вы захватываете несколько различных, но взаимосвязанных экспозиций, охватывающих весь динамический диапазон сцены. В целом экспозиции отличаются на 1-2 стопа (EV). Это означает, что необходимое число экспозиций определяется следующим образом:

  • ДД сцены, который мы хотим захватить
  • ДД, доступный для захвата камерой за 1 кадр

Каждая последующая экспозиция может увеличиваться на 1-2 стопа (в зависимости от брекетинга, выбранного вами).

Теперь давайте выясним, что вы можете сделать с полученными снимками с разной экспозицией. На самом деле, вариантов немало:

  • Объединить их в HDR-изображение вручную (Photoshop)
  • Объединить их в HDR-изображение автоматически при помощи Automatic Exposure Blending (Fusion)
  • Создать HDR-изображение в специализированном программном обеспечении для обработки HDR

Ручное объединение

Ручное объединение снимков с различной экспозицией (используя, по сути, технику фотомонтажа) почти столь же старо, как искусство фотографии. Несмотря на то, что в настоящее время Photoshop и делает этот процесс более лёгким, но он всё еще может быть достаточно утомительным. Имея альтернативные варианты, вы, вряд ли, прибегнете к объединению снимков вручную.

Автоматическое смешивание экспозиций (также называемое Fusion)

В этом случае за вас всё сделает программное обеспечение (например, при использовании Fusion в Photomatix). Программа выполняет процесс объединения кадров с различной экспозицией и генерирует конечный файл изображения.

Применение Fusion обычно дает очень хорошие изображения, которые выглядят более «естественными»:

Создание HDR-изображений

Любой процесс создания HDR включает два этапа:

  • Создания HDR изображения
  • Тональная конвертация HDR-изображения в стандартное 16-битное изображение

При создании HDR-изображений вы, на самом деле, преследуете ту же цель, но идёте иным путём: вы не получаете конечное изображение сразу же, а снимаете несколько кадров с различной экспозицией, а затем объединяете их в HDR-изображение.

Новшество в фотографии (которая уже не может обходиться без компьютера): 32-битные HDR-изображения с плавающей точкой, позволяющие хранить практически бесконечный динамический диапазон тональных значений.

В ходе процесса создания HDR-изображения, программа сканирует все тональные диапазоны, полученные в результате брекетинга, и генерирует новое цифровое изображение, включающее совокупный тональный диапазон всех экспозиций.

Примечание: когда появляется что-то новое, всегда найдутся люди, утверждающие, что это уже не ново, и они делали это еще до своего рождения. Но расставим все точки над i: способ создания HDR-изображения, описанный здесь, достаточно новый, поскольку для его использования необходим компьютер. И с каждым годом результаты, получаемые при помощи этого способа, становятся всё лучше и лучше.

Итак, ещё раз вернёмся к вопросу: зачем создавать изображения с высоким динамическим диапазоном, если динамический диапазон устройств вывода настолько ограничен?

Ответ заключается в тональном отображении – процессе конвертации тональных значений широкого динамического диапазона в более узкий динамический диапазон устройств вывода изображений.

Именно поэтому тональное отображение для фотографов является самым важным и непростым этапом создания HDR-изображения. Ведь вариантов тонального отображения одно и того же HDR-изображения может быть множество.

Говоря о HDR-изображениях, нельзя не упомянуть о том, что они могут быть сохранены в различных форматах:

  • EXR (расширение файла: .exr, широкая цветовая гамма и точная цветопередача, ДД около 30 стопов)
  • Radiance (расширение файла: .hdr, менее широкая цветовая гамма, огромный ДД)
  • BEF(собственный Формат UnifiedColour, направленный на получение более высокого качества)
  • 32-битный TIFF (очень большие файлы из-за низкой степенью сжатия, в силу этого редко применяется на практике)

Для создания HDR-изображений вам потребуется программное обеспечение, поддерживающее создание и обработку HDR. К таким программам можно отнести:

  • Photoshop CS5 и старше
  • HDRsoft в Photomatix
  • Unified Color’s HDR Expose или Express
  • Nik Software HDR Efex Pro 1.0 и старше

К сожалению, все перечисленные программы генерируют различные HDR-изображения, которые могут отличаться (подробнее об этих аспектах мы поговорим позже):

  • Цветом (оттенком и насыщенностью)
  • Тональностью
  • Сглаживанием
  • Обработкой шумов
  • Обработкой хроматических аберраций
  • Уровнем подавления ореолов

Основы Тонального отображения

Как и в случае со сценой с низким динамическим диапазоном, при отображении сцены с высоким ДД мы должны сжать ДД сцены до выходного ДД:

В чём же отличие рассмотренного примера с примером сцены с низким динамическим диапазоном? Как видите, в этот раз, тональная компрессия более высока, так что классический способ с тональными кривыми уже не работает. Как обычно, прибегнем к самому доступному способу показать основные принципы тонального отображения – рассмотрим пример:

Чтобы продемонстрировать принципы тонального отображения, воспользуемся инструментом HDR Expose программы Unified Color, поскольку он позволяет выполнять с изображением различные операции по модульному принципу.

Ниже вы можете увидеть пример генерации HDR-изображения без внесения каких-либо изменений:

Как видите, тени вышли достаточно тёмными, а области светов – пересвечены. Давайте взглянем, что нам покажет гистограмма HDR Expose:

С тенями, как видим, всё не так плохо, а вот света обрезаются, примерно, на 2 стопа.

Для начала, посмотрим, как экспокоррекция на 2 стопа может улучшить изображение:

Как видите, область светов стала выглядеть гораздо лучше, но в целом изображение выглядит слишком тёмным.

То, что нам нужно в этой ситуации – это объединить компенсацию экспозиции и снижение общего контраста.

Теперь общий контраст в порядке. Детали в области светов и теней не теряются. Но, к сожалению, изображение выглядит довольно плоским.

Во времена до эпохи HDR, эта проблема могла быть решена при помощи использования S-образной кривой в инструменте Кривые (Curves):

Однако, создание хорошей S-кривой займёт некоторое время, а в случае ошибки, легко, может привести к потерям в области светов и теней.

Поэтому инструменты тонального отображения предусматривают другой путь: улучшение локального контраста.

В полученном варианте детали в светах сохранены, тени не обрезаны, а плоскостность изображения исчезла. Но и это ещё не окончательный вариант.

Для придания фотографии завершённого вида оптимизируем изображение в Photoshop CS5:

  • Настроем насыщенность
  • Оптимизируем контраст с помощью DOPContrastPlus V2
  • Увеличим резкость с помощью DOPOptimalSharp

Основное различие между всеми инструментами для работы с HDR заключаются в алгоритмах, используемых ими для понижения контраста (например, алгоритмы определения того, где заканчиваются общие настройки и начинаются локальные).

Не существует правильных или неправильных алгоритмов: всё зависит от ваших собственных предпочтений и вашего стиля фотографии.

Все основные инструменты для работы с HDR, предлагаемые рынком, также позволяют контролировать и другие параметры: детализация, насыщенность, баланс белого, удаление шума, тени/света, кривые (большинство из этих аспектов мы подробно рассмотрим позже).

Динамический диапазон и HDR. Резюме.

Способ расширения динамического диапазона, который способна захватить камера, весьма стар, поскольку ограниченность возможностей камер известна очень давно.

Ручное или автоматическое наложение изображений предлагает очень мощные способы конвертации широкого динамического диапазона сцены до динамического диапазона, доступного вашему устройству вывода изображения (монитору, принтеру и т.д.).

Создание бесшовных объединённых изображений вручную может быть очень сложным и трудоемким: бесспорно, метод Dodge & Burn– незаменим для создания качественного отпечатка изображения, но он требует длительной практики и усердия.

Автоматическая генерация HDR-изображений является новым способом преодолеть старую проблему. Но при этом алгоритмы тонального отображения сталкиваются с проблемой сжатия высокого динамического диапазона до динамического диапазона изображения, которое мы можем просмотреть на мониторе или в распечатанном виде.

Различные методы тонального отображения могут дать совершенно различные результаты, и выбор метода, дающего желаемый результат, зависит только от фотографа, то есть от вас.

Больше полезной информации и новостей в нашем Telegram-канале «Уроки и секреты фотографии» . Подписывайся!

Как известно, широкий динамический диапазон - один из главных элементов кинематографического изображения.

Так сложилось потому, что большинство из нас, осознанно или нет, воспринимает определение «кинематографичный» как синоним «снятый на пленку». Пленочные кадры традиционно обладали более широким динамическим диапазоном, чем цифровые изображения. За исключением обращаемых фотоматериалов, но это совсем другая история.

До определенного момента, когда камеры, вроде , доказали, что широкий динамический диапазон возможен и при цифровой съемке, она ассоциировалась у нас с материалом низкого качества со множеством артефактов, в том числе и на ярких участках кадра.

За пять лет многое изменилось. Теперь меньше, чем за тысячу долларов, мы можем купить модели (например, ), демонстрирующие динамический диапазон, не сильно уступающий пленочному. Это дало режиссерам малобюджетного кино больше свободы, ведь они всегда стремились к качественному изображению, но у них просто не было денег на пленку.

Но одновременно у явления появились побочные эффекты.

В условиях, когда на динамический диапазон делают большой акцент, многие боятся жертвовать им на цветокоррекции, даже если речь идет об определенном стиле.

Вероятнее всего, это последствия подхода производителей камер к их маркетинговым кампаниям, которые вдолбили людям в голову, что широкий динамический диапазон равняется .

Но это не совсем так.

Конечно, при съемке важно сохранять как можно больше цветов, но вовсе не обязательно их все оставлять на постпродакшне. Наоборот, подобное стремление может дать результат, прямо противоположный кинематографическому.

Фильм - это не только то, что вы видите. Это еще и то, что от вас скрыто.

Часто высококонтрастное изображение с уменьшенным динамическим диапазоном лучше запоминается зрителю, обращает на себя внимание. Если вы видите каждую деталь на темных и светлых участках, пространства для воображения уже не остается. Часто такие кадры выглядят искусственно и неестественно. Или, что еще хуже, скучно.

Посмотрите на два снимка, которые я сделал на в RAW. Первое я отредактировал таким образом, чтобы на нем сохранился весь динамический диапазон. Второе же я стремился сделать интереснее, пусть даже это стоило мне многих деталей изображения.

Конечно, все это дело вкуса, но я всегда выберу второе. Гораздо интереснее, когда ты не видишь сразу все и используешь динамический диапазон - или его нехватку - чтобы погрузить зрителя в кадр.

По аналогии вспомним глубину резкости.

В некоторых случаях отлично работает большая глубина резкости (зритель получает возможность одинаково четко воспринимать изображение целиком), но чаще выборочный фокус все же предпочтительнее, так как помогает направить взгляд к действительно важной части кадра. Это гораздо ближе к человеческому восприятию.

Многие режиссеры и операторы понимают это, однако далеко не все работают с динамическим диапазоном по той же логике.

Возможно, переизбыток широкого динамического диапазона в современном кинематографе привел к тому, что многие начали пытаться его сохранить во что бы то ни стало. Они буквально помешаны на том, чтобы технически передать все детали в тенях и светлых участках, забывая самый главный вопрос: «Как зритель воспримет это изображение?».

Часто при просмотре современных фильмов возникает ощущение, что перед тобой - необработанный материал со съемок. Все потому, что авторы используют контраст с осторожностью, чтобы не повредить динамическому диапазону, и в результате получают плоское изображение.

Это не значит, что подобный стиль не имеет права на существование. При выборе эстетической составляющей нет верных или неверных решений. Однако все они должны в первую очередь служить истории.

Спросите себя: передает ли подобное плоское изображение нужную вам атмосферу? Если да - отлично. Если нет - не пытайтесь продемонстрировать максимальный динамический диапазон просто потому, что ваша камера на это способна. Да, это важное качество сенсора современных камер, и оно не раз влияло на мой выбор при покупке. Но в первую очередь это нужно для того, чтобы на постпродакшне у меня был выбор.

Допустим, я собираюсь провести тщательную цветокоррекцию. Это значит, что изображение с широким динамическим диапазоном позволит мне оставить именно те цвета и детали, которые я хочу видеть в результате. Даже если в финальном материале будут непроглядные тени и засвеченные участки, которые я мог бы заснять даже на камеру с восемью ступенями, я все равно предпочту 13 или 14, чтобы поэкспериментировать.

Все дело в выборе.

В качестве заключения скажу вот что. Хорошее кино рождается из интересных решений. Не позволяйте производителям камер указывать вам, что такое кинематографичное изображение. Прислушивайтесь к себе и решайте сами, что вы считаете для себя привлекательным. Если вам нравится плоское изображение - отлично. Но не менее интересным может быть и кадр с небольшим динамическим диапазоном, особенно если того требует история.

Индустрия производства развивается с высокой скоростью. Каждый год на выставках производители представляют новейшие технологии, позволяющие улучшить телевизоры и убедить людей, что пришло время для обновления.

Эволюция

Последние несколько лет провели нас от моделей с экранами на электронно-лучевой трубке до тонких телевизоров. Наблюдался взлет плазменных панелей и их падение. Затем пришла эра высокой четкости, полная поддержка HD и Ultra HD. Были эксперименты и с популярным трехмерным форматом, а также с формой экрана: его делали то плоским, то изогнутым. И вот наступил новый виток этой телевизионной эволюции - телевизоры с HDR. Именно 2016 год стал новой эрой в телевизионной промышленности.

в телевизоре?

Данная аббревиатура расшифровывается как «расширенный динамический диапазон». Технология дает возможность с максимальной точностью приблизить созданную картинку к тому, что человек видит в реальной жизни. Сам по себе наш глаз воспринимает сравнительно маленькое число деталей на свету и в тенях в один момент времени. Но после того как зрачки адаптируются к текущим условиям освещения, их чувствительность увеличивается почти вдвое.

Фотоаппараты и телевизоры с HDR: в чем отличия?

В обоих видах техники задача данной функции является одинаковой - с максимальной достоверностью передать окружающий мир.

Из-за ограничений матриц фотокамер делают несколько снимков с различной экспозицией. Один кадр является очень темным, другой - немного светлее, еще два - очень светлые. Все они потом соединяются при помощи специальных программ вручную. Исключением являются фотоаппараты со встроенной функцией склеивания кадров. Смыслом данной манипуляции является вытаскивание всех деталей из теней и светлых областей.

Телевизоры с поддержкой HDR производители сделали акцентированными на яркости. Так, в идеале устройство должно быть способно в произвольной точке выдавать значение в 4000 кандел на квадратный метр. Но при этом детализация в тенях не должна быть завалена.

Для чего нужен HDR?

Самыми важными параметрами для качества отображаемой картинки являются точность цветопередачи и контрастность. Если поставить рядом 4K-телевизор с HDR-телевизором, который имеет лучшую цветопередачу и увеличенный диапазон контрастности, то большая часть людей остановит свой выбор на втором варианте. Ведь на нем картинка выглядит менее плоско и более реалистично.

Телевизоры с HDR обладают увеличенной градацией, что позволяет получить большее число оттенков различных цветов: красного, синего, зеленого, а также их комбинаций. Таким образом, смыслом моделей с HDR является отображение более контрастной и полноцветной картинки, чем у других телевизоров.

Возможные проблемы

Для того чтобы в полной мере насладиться всеми плюсами технологии, к сожалению, нужны не только телевизоры с HDR, но и контент, который будет соответствовать технологии. В принципе, телевизоры с расширенным динамическим диапазоном изображения делают уже вполне качественно. Яркость моделей поднята в два раза, а подсветка стала локальной и прямой, то есть в одном кадре могут с различной яркостью подсвечиваться разные фрагменты. Самый с HDR является не совсем дешевым. Его стоимость - около 160 тысяч рублей. Эта модель - телевизор Sony. С HDR есть 55-дюймовый и 65-дюймовый экраны. К сожалению, бюджетные модели имеют недостаточную пиковую яркость, а подсветка в них не регулирует произвольные области матрицы. Также у них очень скромное количество передаваемых оттенков цветов.

Сложность использования старых моделей заключается в том, что эффект может быть противоположным тому, который задумал режиссер при съемке своего творения. Ведь совместно с колористами была разработана цветовая схема, а кадры были окрашены с использованием обширной палитры цветов, предоставленных специальным стандартом в кинематографе. Предыдущие модели телевизоров с таким стандартом не работают, так как не способны отобразить некоторые оттенки. Именно поэтому телевизионные версии фильмов смотрятся более бледно, чем должны.

Новые телевизоры с поддержкой HDR могут менять цветовую схему таким способом, как им захочется, применяя свои собственные алгоритмы, которые о видении режиссера не знают. По этой причине создатели придумали технологию, при которой совместно с видеосигналом передаются специальные метаданные, содержащие информацию с алгоритмами изменения картинки под телевизоры с функцией HDR. Теперь устройство знает, где необходимо осветлить, а где затемнить, а также то, в какие моменты нужно добавить какой-то оттенок. И если модель телевизора поддерживает такие возможности, то картинка будет выглядеть точно так, как хотел режиссер.

Контент скоро появится

На текущий момент времени телевизоры с HDR имеют ничтожно малое количество контента. Так, всего несколько названий предоставлено сервисами онлайн-видео, а также последний эпизод фильма «Звездные войны» снят и отредактирован в формате, похожем на HDR. Из-за этого может сформироваться мнение, что нет смысла в покупке телевизоров, поддерживающих расширенный динамический диапазон.

Однако это не так. Есть компании, которые предоставляют возможности для того, чтобы конвертировать видеоконтент в псевдо-HDR. Конечно, это не делается нажатием на одну кнопку, которая моментально в автоматическом режиме улучшит изображение без всякой посторонней помощи. Но есть набор утилит, которые во много раз облегчат работу, связанную с восстановлением задуманной режиссером и колористами цветовой схемы. А это значит, что со временем объемы контента высокого качества будут увеличиваться.

Варианты HDR

Так же как и с ранее выходившими технологиями HD и Blu-Ray, есть несколько мнений о том, как все должно быть реализовано. Поэтому HDR поделился на форматы. Самым распространенным является формат HDR10. Он поддерживается всеми телевизорами с HDR. В данном формате метаданные целиком присоединены к видеофайлу.

Следующий варианта - это Dolby Vision. Тут каждая сцена обрабатывается отдельно. Картинка из-за этого выглядит лучше. В России такой вариант поддерживается только телевизорами от LG. Проигрывателей с его поддержкой пока нет, так как современные модели слабы, и их процессоры не могут потянуть такую нагрузку. Владельцы же моделей с HDR10 с выходом обновлений получат обработку видео, приближенную к DV.

Требования

В 2016 году HDR-телевизоры стали массово появляться на рынке. Почти каждое устройство с поддержкой 4K может понимать этот формат. Но, к сожалению, понимать - это одно, а правильно отображать - совсем другое.

Идеальный вариант - это телевизор с OLED-матрицей и поддержкой 4K, который способен делать любой пиксель максимально ярким или же затемнять его. Подойдут и модели, обладающие ковровой подсветкой из светодиодов, которые индивидуально либо в группах регулируют яркость своих областей матрицы.

Обновление

Если ваш телевизор поддерживает технологию HDMI 2.0, то есть очень большая вероятность, что в ближайшее время будет получено программное обновление до нового стандарта, который нужен для того, чтобы передавать метаданные. Эти два стандарта полностью совместимы физически. Разница заключается лишь в способах программной обработки видеопотока.

Как это самое обновление получить, если оно не пришло автоматически? Необходимо зайти в настройки телевизора и выбрать пункт "Поддержка". Здесь должна быть возможность обновления, при выборе которой нужно будет подтвердить действие и выбрать загрузку по сети. Далее система сама отыщет новую прошивку и предложит ее установить.

Вывод

Как уже было сказано в начале статьи, большее число людей выберут полноцветную картинку, а не изображение с высоким разрешением. Это вполне логично. Ведь много пикселей - это, несомненно, хорошо, но еще лучше, когда пиксели хорошие. Список телевизоров с поддержкой HDR пока невелик. Такие модели есть у LG, Sony и Samsung.

Развитие технологии кажется значительно более перспективным, чем гонка за разрешением. На последних телевизионных выставках анонсированы новые модели, которые должны не только поддерживать высочайшее разрешение, но и давать высокую яркость, а также демонстрировать определенные уровни черного цвета и охватывать большое число оттенков. Нужно отметить, что формат HDR по умолчанию заявлен во множестве моделей, которые выйдут в 2017 году. Проблема может заключаться лишь в стандартах. Производителям контента и телевизоров нужно ее решать, и текущий год, судя по всему, будет посвящен именно этому.

Таким образом, мы выяснили, что такое HDR в телевизоре, для чего нужна эта технология, какие у нее преимущества и недостатки. Конечно, на сегодняшний день нельзя настоятельно рекомендовать любителям телевидения переходить на новые модели, так как технология все еще находится на стадии развития. Но, зная современные темпы развития, можно с уверенностью сказать, что через год HDR достигнет качественно иного уровня и все больше людей начнут приобретать телевизоры, поддерживающие расширенный диапазон. К этому времени производители контента как раз смогут произвести большое число фильмов и сериалов в формате HDR, и просмотр телевизора будет приносить еще большее любителям красивой картинки.

by Cal Redback

Динамический диапазон является одним из многих параметров, на которые обращают внимание все, кто покупает или обсуждает фотокамеру. В различных обзорах часто используется этот термин наряду с параметрами шума и разрешения матрицы. Что же обозначает этот термин?

Не должно быть секретом, что динамический диапазон фотоаппарата - это способность камеры к распознаванию и одновременной передаче светлых и темных деталей снимаемой сцены.

Если говорить более детально, то динамический диапазон камеры - это охват тех тонов, которые она может распознать между черным и белым. Чем больше динамический диапазон, тем больше этих тонов могут быть записаны и тем больше деталей может быть извлечено из темных и светлых участков снимаемой сцены.

Динамический диапазон обычно измеряется в значениях . Хотя вроде бы и очевидно, что важным является возможность захватить наибольшее, насколько это возможно, число тонов, для большинства фотографов приоритетной остается цель - попытаться создать приятный образ. А это как раз не означает, что необходимо, чтобы была видна каждая деталь изображения. Например, если темные и светлые детали изображения будут разбавлены серыми полутонами, а не черными или белыми, то вся картинка будет иметь очень низкую контрастность и выглядеть довольно скучно и нудно. Ключевыми являются границы динамического диапазона фотокамеры и понимание как можно использовать его для создания фотографий с хорошим уровнем контрастности и без т.н. провалов в светах и тенях.

Что видит камера?

Каждый пиксель в изображении представляет один фотодиод на сенсоре камеры. Фотодиоды собирают фотоны света и превращают их в электрический заряд, который затем преобразуется в цифровые данные. Чем больше фотонов, которые собираются, тем больше электрический сигнал и тем ярче будет в изображении пиксель. Если фотодиод не собирает никаких фотонов света, то никакой электрический сигнал не будет создан и пиксель будет черным.

датчик 1 дюйм

датчик APS-C

Тем не менее, датчики бывают различных размеров и разрешений, а также при их производстве используются различные технологии, которые влияют на размер фотодиодов каждого датчика.

Если рассматривать фотодиоды как ячейки, то можно провести аналогию с наполнением. Пустой фотодиод будет воспроизводить черный пиксель, в то время как 50% от полного покажет серый цвет и заполненный на 100% будет белым.

Скажем, мобильные телефоны и компактные камеры имеют очень маленькие датчики изображения по сравнению с DSLR. Это означает, что они также имеют гораздо меньшие фотодиоды на датчике. Таким образом, даже при том, что и компактная камера, и DSLR может иметь датчик 16-миллионов пикселей, динамический диапазон будет отличаться.

Чем больше фотодиод, тем больше его способность хранить фотонов света по сравнению с меньшим размером фотодиода в меньшем датчике. Это означает, что чем больше физический размер, тем диод может лучше записывать данные в светлых и темных областях

Наиболее распространена аналогия, что каждый фотодиод похож на ведро, которое собирает свет. Представьте себе, что 16 миллионов ведер занимаются сбором света по сравнению с 16 млн. чашек. Ведра имеют больший объем, за счет которого способны собрать большее количество света. Чашки гораздо меньшей емкости, поэтому при наполнении могут передать фотодиоду гораздо меньший по мощности , соответственно пиксель может воспроизводиться с гораздо меньшим количеством световых фотонов, чем получается от более крупных фотодиодов.

Что это означает на практике? Камеры с меньшими размерами датчиков, такие как в смартфонах или потребительские компакты, имеют меньший динамический диапазон, чем даже самый компактный фотоаппарат из системных камер или зеркалок, которые используют большие датчики. Тем не менее, важно помнить, что влияет на ваши изображения общий уровень контраста в сцене, которую вы фотографируете.

В сцене с очень низкой контрастностью разница в тональном диапазоне, захваченном камерой мобильного телефона и DSLR, может быть мала или вообще не различима. Датчики обеих камер способны захватывать полный диапазон тонов сцены, если свет выставлен правильно. Зато при съемке высококонтрастных сцен будет очевидным, что, чем больше динамический диапазон, тем большее количество полутонов он способен передать. И так как более крупные фотодиоды имеют лучшую способность при записи более широкого диапазона тонов, следовательно, и имеют больший динамический диапазон.

Давайте посмотрим разницу на примере. На фотографиях ниже можно наблюдать отличия в передаче полутонов камерами с разным динамическим диапазоном при одинаковых условиях высокой контрастности освещения.

Что такое разрядность изображения?

Разрядность тесно связана с динамическим диапазоном и диктует камере какое количество тонов может быть воспроизведено в изображении. Хотя цифровые снимки полноцветные по умолчанию, и они не могут быть сняты не цветными, датчик камеры на самом деле не записывает непосредственно цвет, он просто записывает цифровое значение для количества света. Например, 1-битное изображение содержит самую простую "инструкцию" для каждого пикселя, поэтому в данном случае есть только два возможных конечных результата: черный или белый пиксель.

Битное изображение состоит уже из четырех различных уровней (2×2). Если оба бита равны - это белый пиксель, если оба выключены, то это черный. Есть также возможность иметь два варианта, что на изображении будет соответственное отражение еще двух тонов. Двухбитное изображение дает черно-белый цвет плюс два оттенка серого.

Если изображение 4-битное, соответственно существует 16 возможных комбинаций в получении различных результатов (2x2x2x2).

Когда дело доходит до обсуждения цифровых изображений и датчиков, чаще всего можно услышать о 12, 14 и 16-битных датчиках, каждый из которых способен записывать 4096, 16384 и 65536 различных тонов соответственно. Чем больше битовая глубина, тем большее количество значений яркости или тона может быть записано с помощью датчика.

Но и тут кроется подвох. Не все камеры способны воспроизводить файлы с такой глубиной цвета, которую может позволить создать датчик. Например, на некоторых камерах Nikon исходные файлы могут быть как 12 бит, так и 14 бит. Дополнительные данные в 14-битных изображениях означают, что в файлах, как правило, больше деталей в светлых и темных областях. Так как размер файла больше, то и времени на обработку и сохранение тратится больше. Сохранение необработанных изображений 12-битных файлов происходит быстрее, но тональный диапазон изображения из-за этого сжимается. Это означает, что некоторые очень темные серые пиксели будут отображаться как черные, а некоторые светлые тона могут выглядеть как .

Когда происходит съемка в формате JPEG, файлы сжимаются еще больше. Изображения JPEG являются 8-разрядными файлами, состоящими из 256 различных значений яркости, поэтому многие из мелких деталей, доступных для редактирования в исходных файлах, снятых в , полностью теряются в файле JPEG.

Таким образом, если у фотографа имеется возможность получить наиболее полную отдачу от всего возможного динамического диапазона фотокамеры, то лучше сохранять исходники в "сыром" виде - с максимально возможной битовой глубиной. Это означает, что снимки будут хранить наибольшее количество информации о светлых и темных областях, когда дело коснется редактирования.

Чем понимание динамического диапазона фотокамеры важно для фотографа? Исходя из имеющейся информации, можно сформулировать несколько прикладных правил, придерживаясь которых, повышается вероятность получения хороших и качественных изображений в трудных условиях для фотосъемки и избегать серьезных ошибок и недочетов.

  • Лучше снимок сделать более светлым, чем перетемнить его. Детали в светах "вытягиваются" проще, потому что они не такие шумные, как детали в тени. Безусловно, что правило действует при условиях более-менее правильно выставленной экспозиции.
  • При замере экспозиции по темным областям лучше жертвовать детализацией в тенях, более тщательно проработав света.
  • При большой разнице в яркости отдельных участках снимаемой композиции экспозицию следует замерять по темной части. При этом желательно выравнивать по возможности общую яркость поверхности изображения.
  • Оптимальное время для съемки считается утреннее или вечернее, когда свет распределяется равномерней, чем в полдень.
  • Портретная съемка пройдет лучше и легче, если использовать дополнительное освещение с помощью выносных вспышек для фотокамеры (например, купить современные накамерные вспышки http://photogora.ru/cameraflash/incameraflash).
  • При прочих равных следует пользоваться наименьшим из возможных значением ISO.