Основные этапы жизненного цикла технических систем. Жизненный цикл системы. Порядок выполнения работы

Жизненный цикл системы является старейшим методом построения информа­ционных систем, в наши дни он используется при создании сложных проектов среднего и крупного масштабов. Данный процесс включает в себя шесть этапов: 1) подготовка проекта; 2) исследование системы; 3) проектирование; 4) програм­мирование; 5) инсталляция; 6) эксплуатация и освоение системы. Эти этапы изо­бражены на рис. 10.7. Каждый этап включает в себя несколько процессов.

Данная методика предполагает четкое разделение труда между конечными пользователями и специалистами по информационным системам. Технические

Systems lifecycle (жизненный цикл системы)

Традиционная методика разработки информационной системы, подразделя­ющая процесс проектирования и внедрения на отдельные последовательные этапы, в которых используется четкое разделение труда между конечными пользователями и техническими специалистами.

специалисты, такие как системные аналитики и программисты, отвечают за про­ведение основного системного анализа, проектирование и внедрение системы; пользователи занимаются выяснением информационных потребностей органи­зации и оценкой работы технического персонала.

Этапы жизненного цикла системы

Этап определения проекта позволяет сформулировать проблемы организации, которые могут быть решены при помощи создания новой информационной си­стемы или модификации старой. На этапе системного исследования анализиру­ются проблемы, связанные с существующими системами, и оцениваются различ­ные варианты их решения. Большая часть информации, полученной на этом этапе, используется для определения требований, предъявляемых к системе.

На стадии проектирования разрабатываются спецификации для выбранного решения. Этап программирования заключается в трансляции проектных специ­фикаций (разработанных на предыдущем этапе) в программный код. Системные

аналитики совместно с программистами готовят спецификации для каждой про­граммы, входящей в систему.

Инсталляция (установка) включает в себя три процесса, предшествующих за­пуску системы: тестирование, обучение персонала и конверсию. Затем на этапе эксплуатации и освоения проверяется функционирование системы, пользовате­ли и технические специалисты определяют необходимость внесения каких-либо модификаций и коррективов. После того как система окончательно настроена, она нуждается в постоянном техническом обслуживании для исправления воз­никающих ошибок или перенастройки для соответствия новым требованиям. организации, а также для повышения эффективности работы. Со временем тех­ническое обслуживание требует все больше затрат и времени - жизненный цикл системы подходит к концу. По его окончании на предприятии внедряется новая система, и все начинается сначала. Ограничения методологии жизненного цикла системы



Данный подход до сих пор используется при создании крупномасштабных слож­ных систем, которые требуют четкого предварительного анализа, точных специ­фикаций и контроля всего процесса разработки и внедрения. Однако методика жизненного цикла сопряжена с большими затратами, требует больших временных затрат и не отличается гибкостью. Приходится создавать множество новых доку­ментов, а многие процессы повторяются заново до тех пор, пока система не будет удовлетворять всем условиям. Из-за этого большинство разработчиков старают­ся не вносить изменений в спецификации, созданные в самом начале процесса проектирования, чтобы не начинать все сначала. Данный подход неприменим для

Project definition (определение проекта)

Один из этапов системного жизненного цикла, позволяющий сформулиро­вать организационные проблемы, которые могут быть решены при помощи новой информационной системы. Systems study (исследование системы)

Этап жизненного цикла системы, на котором проводится анализ проблем, связанных с существующими системами, и оцениваются альтернативные ва­рианты решений.

Design (проектирование)

Этап, на котором разрабатываются проектные спецификации для системного

Programming (программирование)

На данном этапе проектные спецификации транслируются в программный код.

Installation (установка)

Данный этап состоит из трех процессов: тестирования, обучения персонала и конверсии; последних подготовительных стадий перед вводом системы в экс­плуатацию. Postimplementation (эксплуатация и освоение системы)

Последний этап системного жизненного цикла, на котором проверяется функ­ционирование системы при ее повседневной эксплуатации и при необходи­мости вносятся модификации и исправления.

небольших настольных систем, которые по своей природе более индивидуализи­рованы, т. е. «настроены» на определенного пользователя.

Создание прототипа

Создание прототипа заключается в разработке экспериментальной системы, ко­торую могут оценить пользователи и которая не требует больших затрат. Порабо­тав с такой «демонстрационной версией», пользователи смогут лучше определить собственные информационные потребности. Прототип, одобренный пользовате­лями, может служить шаблоном для создания полнофункциональной системы.

Прототип - это работоспособная версия информационной системы или ее части, однако это не просто предварительная модель. После первого запуска про­тотип подвергается изменениям и совершенствуется до тех пор, пока он не будет отвечать всем пользовательским запросам. После того как прототип принимает законченный вид, он может быть конвертирован в рабочую систему.

Процесс создания прототипа, его тестирования, усовершенствования и повтор­ного тестирования называется итеративным процессом разработки системы, по­скольку отдельные его этапы многократно повторяются. Создание прототипа -гораздо более итеративный процесс, чем методика жизненного цикла системы, при ее использовании система подвергается более значительным изменениям. Как уже упоминалось, при использовании прототипа внеплановые работы по мо­дификации системы заменяются запланированными итерациями, при этом каж­дая версия все более полно отражает пользовательские предпочтения. Создание прототипа: этапы процесса

На рис. 10.8 изображен процесс создания прототипа, состоящий из четырех сле­дующих этапов (шагов):

Шаг 1. Определение основных пользовательских требований. Проектировщик системы (как правило, в его роли выступает специалист по информационным си­стемам) работает совместно с пользователем до тех пор, пока не уяснит потребно­сти последнего.

Шаг 2. Разработка начального прототипа. Проектировщик быстро создает ра­бочую модель, используя программное обеспечение нового поколения, мультиме­дийные программы или системы автоматизированного проектирования (см. гл. 14).

Шаг 3. Работа с прототипом. Пользователь оценивает работу системы и дает рекомендации по ее улучшению.

Prototyping (создание прототипа)

Процесс создания экспериментальной системы для демонстрационных це­лей и предварительного тестирования, не требующий больших затрат. Prototype (прототип)

Предварительная рабочая версия информационной системы, используемая для демонстрационных целей и предварительного тестирования. Iterative (итеративный процесс)

Процесс неоднократного повторения нескольких этапов в процессе создания системы.

Шаг 4. Исправление и совершенствование прототипа. Проектировщик реали­зует на практике все пожелания пользователей. После внесения изменений и ис­правления ошибок процесс возвращается к шагу 3. Шаги 3 и 4 повторяются до тех пор, пока пользователь не будет полностью удовлетворен.

Когда итерации прекращаются, модель становится «рабочим прототипом», на основе которого составляются окончательные спецификации системы. Иногда та­кой прототип просто используется как рабочая версия информационной системы.

Использование прототипа: достоинства и недостатки

Создание прототипа наиболее целесообразно в том случае, когда неясны требова­ния пользователей или не выработано четкое решение. Особенно эта методика полезна при разработке пользовательских интерфейсов информационных си­стем. Благодаря вовлечению пользователей в процесс проектирования система получается более «дружелюбной» и отвечающей требованиям организации.

End-user interface (пользовательский интерфейс)

Часть информационной системы, при помощи которой осуществляется кон­такт с пользователем (рабочие окна и команды).

Но быстрое создание прототипа может создать иллюзию ненужности некото­рых важных этапов разработки системы. Если завершенная модель работает нор­мально, руководство компании может решить, что такие процессы, как програм­мирование, реконструкция системы и подготовка исчерпывающей документации, не играют существенной роли в создании полностью работоспособной системы. Некоторые из систем, созданные в такие сжатые сроки, не могут оперировать большими объемами данных или же не в состоянии поддерживать много пользо­вателей одновременно. Процесс создания прототипа может также сильно замед­литься, если в нем участвуют слишком много пользователей (Hardgrove, Wilson, and Eastman, 1999).

Пакеты прикладных программ

Информационные системы могут создаваться при помощи специальных пакетов прикладных программ, описанных в гл. 6. Существует множество процессов ко­торые являются общими для большинства организаций, например обработка платежных ведомостей, кредитный контроль или складской учет. Для автомати­зации подобных процессов существуют универсальные программные комплек­сы, способные удовлетворить нужды практически любого предприятия.

Если программный пакет отвечает большей части организационных потреб­ностей, то компании не нужно писать собственные программы. Она может сэко­номить время и деньги, используя должным образом переработанные, настроен­ные и протестированные программы из пакета. Производители таких пакетов обеспечивают текущее обслуживание и поддержку своих программных комплек­сов, а также регулярно обновляют их.

Если потребности организации настолько оригинальны, что им не соответ­ствует ни один пакет программ, то можно использовать возможности кастомиза-ции (настройки), которые содержатся в большинстве современного программного обеспечения. Подобная настройка позволяет модифицировать пакет таким обра­зом, чтобы он соответствовал нуждам предприятия, не нарушая его целостности и функциональности. Если предполагаются слишком серьезные изменения, то дополнительные работы по перепрограммированию и настройке могут обойтись очень дорого и отнять много времени, к тому же они могут свести на «нет» многие преимущества данного пакета программ. На рис. 10.9 показано, как растет соот­ношение цены пакета и стоимости его внедрения с увеличением степени касто-мизации. Изначальная продажная цена пакета может на практике не соответство­вать действительности, поскольку в ней не учтены скрытые расходы на настройку и внедрение.

Application software package (пакет прикладных программ)

Набор программ, готовых к работе, которые можно приобрести или взять в аренду.

Customization (кастомизация)

Настройка и модификация программного пакета под нужды конкретной орга­низации, не нарушающие его целостности и функциональности.

Выбор программного пакета

Если разработка новой информационной системы ведется с использованием про­граммного пакета от сторонних производителей, системные аналитики должны оценить варианты применения различных программ. Важнейшими критериями оценки являются функциональность пакета, гибкость, дружественность интер­фейса, потребляемые ресурсы, требования к базам данных, сложность установки и обслуживания, полнота документации, репутация производителя и цена. Оцен­ка пакета производится на основе запроса предложений (RFP), с использовани­ем подробного списка вопросов, отсылаемого производителю или поставщику. Когда программный пакет выбран, то организация уже не контролирует пол­ностью процесс проектирования. Вместо подгонки системных спецификаций под нужды пользователей проектировщики стараются привести предпочтения поль­зователей в соответствие с возможностями выбранной программы. Если потреб­ности организации конфликтуют с принципами работы приобретенных программ, то нужно или адаптировать программный пакет, или изменить бизнес-процессы самого предприятия.

Разработка конечными пользователями

Некоторые типы информационных систем могут разрабатываться конечными пользователями при незначительном участии технических специалистов. Этот феномен носит название разработки конечными пользователями. Используя языки программирования четвертого поколения, графические языки и специальные утилиты для персональных компьютеров, пользователи могут манипулировать данными, создавать отчеты и даже формировать полноценные информационные системы для собственного пользования, причем им даже не всегда нужна помощь профессиональных системных аналитиков или программистов. Многие такие си-

Request for proposal (RFP) (запрос предложений)

Подробный список вопросов, отсылаемый производителям программного обеспечения или другим службам для того, чтобы определить, соответствует ли программный продукт нуждам организации.

End-user development (разработка конечными пользователями)

Разработка информационных систем конечными пользователями при незна­чительном участии технических специалистов.

схемы создаются гораздо быстрее, чем системы, разрабатываемые стандартными методами. На рис. 10.10 изображен процесс пользовательской разработки.

ПРАКТИЧЕСКИХ РАБОТ

ПО ДИСЦИПЛИНЕ

«ТЕОРИЯ ТЕХНИЧЕСКИХ СИСТЕМ»

(для студентов специальностей

заочной формы обучения)

Макеевка – 2010


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ДОНБАССКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ

СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ

Кафедра “Подъемно-транспортные, строительные, дорожные машины

и оборудование”

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ

ПРАКТИЧЕСКИХ РАБОТ

ПО ДИСЦИПЛИНЕ

«ТЕОРИЯ ТЕХНИЧЕСКИХ СИСТЕМ»

(для студентов специальностей

7.090214 «Подъемно-транспортные, строительные, дорожные,

мелиоративные машины и оборудование» и

7.090258 «Автомобили и автомобильное хозяйство»

заочной формы обучения)

Макеевка – 2010


УДК 681.51:519.21

Методические указания к выполнению практических работ по дисциплине «Теория технических систем» (для студентов специальностей 7.090214 «Подъемно-транспортные, строительные, дорожные, мелиоративные машины и оборудование» и 7.090258 «Автомобили и автомобильное хозяйство» заочной формы обучения) / Сост.: В.А. Пенчук, Н.А. Юрченко.- Макеевка: ДонНАСА, 2010.- 25 с.

В методических указаниях приведены цель и порядок выполнения практических работ, теоретические основы, варианты заданий, контрольные вопросы.

Составители: проф. В.А. Пенчук

асс. Н.А. Юрченко

Рецензенты: доц. А.К. Кралин

доц. В.А. Талалай

Ответственный за выпуск проф. В.А. Пенчук


ПРАКТИЧЕСКАЯ РАБОТА

СОСТАВЛЕНИЕ ЖИЗНЕННОГО ЦИКЛА

ТЕХНИЧЕСКОЙ СИСТЕМЫ»

Цель работы: получение практических навыков в составлении жизненного цикла технической системы.

Порядок выполнения работы:

1. Изучить структуру и этапы жизненного цикла технических систем.

2. Дать определения понятиям: жизненный цикл, техническое задание, технический проект, рабочая документация, экспериментальный образец, серийное производство, проектирование, конструирование.

3. Разработать общую схему жизненного цикла для заданной системы.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

Структура жизненного цикла технической системы .

Структура жизненного цикла технической системы (рис. 1.1) включает в себя основные временные этапы ее существования: научно-исследовательских работ (), разработки рабочей документации (), подготовки производства для ее изготовления (), изготовления (), предпродажной подготовки (), эксплуатации () и утилизации (). Каждый этап жизненного цикла требует определенных материальных затрат () и только при ее функции возможно получение некоторых преобразований.

Укрупненная система жизненного цикла существенно проще реальной, так как совокупность этапов, входящих в систему, имеет многочисленные внутренние технические системы, которые между собой имеют внутренние связи. Например, на этапе НИР имеют место процессы теоретических и экспериментальных исследований, обработки результатов, создание технического задания и т.п.

Рисунок 1.1 – Жизненный цикл технической системы:

ТЗ – техническое задание; РД – рабочая документация; TS – техническая система; акт – акт утилизации

На этапе создания рабочей документации, как технической системы, необходимо выполнять ряд операций по расчету и проектированию узлов и деталей, процессов и подпроцессов.

При подготовке производства, как технической системы, к изготовлению деталей узлов, сборочных единиц и в целом технических систем опять необходимо иметь дело со значительным объемом новых технических систем: станков, инструментов, процессов сборки и установки необходимого оборудования и т.п.

Сказанное можно с некоторыми изменениями распространить на этап изготовления некоторой сложной технической системы, состоящей из деталей, узлов сборочных единиц, а затем – на цикл эксплуатации и утилизации.

При любой системе производственной деятельности в создании, реализации и эксплуатации технических систем действуют три взаимосвязанных процесса: разработки «Р »; производства «П р » и эксплуатации «Э». Процессы «Р » и «П р » могут выполняться одной специализированной формой, что позволяет повысить качество технической системы в сфере эксплуатации «Э ».

Не зависимо от функциональных и экономических связей объектов «Р » и «П р » в них должны быть следующие цеха или отделы: исследовательский, конструкторско-технологический, испытательный, производственный, материально-технического снабжения, предпродажной подготовки и другие по специфике технической системы.

Этапы жизненного цикла технической системы.

Жизненный цикл технической системы состоит из ряда последовательных этапов (табл. 1.1), каждый из которых требует специфического подхода к решению поставленных или, вернее, возникающих задач.

Таблица 1.1 – Распределение основных этапов жизненного цикла

технической системы между организациями

Технические противоречия. Наиболее часто проблемные ситуации возникают на стадии создания технических систем. Изучение проблемной ситуации предусматривает выявление технических противоречий, которые могут быть административными, техническими и физическими.

Административные противоречия – это противоречия, которые возникают в начале технической задачи, когда надо принимать решение: кем делать, кто финансирует, где делать и т.д.?

Технические противоречия – это противоречия, которые возникают уже в процессе создания или изменения параметров технической системы.

Физические противоречия – это противоречия, которые возникают при взаимно противоположных требованиях к системе или к ее отдельным частям (например, легкая и прочная, устойчивая и малая опорная поверхности и т.д.).

Необходимо четко различать противоречия, которые возникают на стадии разработки технического задания (ТЗ) на техническую систему и на стадиях проектирования и конструирования, изготовления и эксплуатации. Стадия разработки «ТЗ» предназначена для решения вопросов «почему», что относится к научно-техническим задачам, на остальных стадиях решаются вопросы «как делать».

Техническое творчество. Процесс создания новых технических решений называют техническим творчеством . Техническое творчество предполагает преобразование уже известных знаний, учений и опыта в новые технические системы. Техническое творчество весьма многообразно и происходит во всех областях техники, оно может быть условно разделено на такие виды деятельности: инженерно-исследовательскую, инженерно-конструкторскую и инженерно-технологическую. В первом случае устанавливаются новые закономерности процессов и технических систем, дается ответ на вопрос «почему это происходит?». Во втором – создаются новые технические системы в виде рабочей документации, моделей, макетов, а в третьем – в виде реальных технических систем.

В научных исследованиях применяется система научного эксперимента, суть которого сводится к широкому использованию различных способов моделирования технических систем и математической теории планирования и обработки результатов эксперимента.

В общем случае современные научные исследования строятся по схеме: эксперимент – построение модели, интерпретация модели и принятие решения о направлении дальнейшего исследования.

При выполнении научных исследований одной из важнейших задач является дать достоверное технико-экономическое обоснование проектируемой технической системы, при этом используя минимальные финансовые затраты.

Инженерно-конструкторское творчество может быть разделено на проектирование и конструирование.

Проектирование представляет собой этап поиска научно обоснованных, технически осуществимых и экономически целесообразных инженерных решений.

Конструирование – это этап создания рабочей документации на конкретное, однозначное техническое решение, которое было принято при проектировании. Весьма часто уже в процессе конструирования технической системы, может приниматься новое оригинальное решение и процесс проектирования уже проводится повторно. Можно считать, что процессы проектирования и конструирования являются взаимосвязанными и дополняющими друг друга. В процессе конструирования создаются общие виды, сборочные единицы, узлы и детали в виде, удобном для размножения и представления в процессе изготовления.

Качество и надежность технической системы во многом зависит от этапа проектирования. Бесспорно, без качественно изготовленной рабочей документации даже лучший проект останется просто предложением. Качество конструкторской продукции во многом зависит от квалификации специалистов проектно-технологического отдела и времени работы над проектом.

Конструирование – это также техническая система (процесс), а рабочая документация – техническая система (объект). Для этих систем также необходимо в обязательном порядке выполнить технико-экономическую оценку, проводить анализ вариантного проектирования и выбор наиболее эффективного. При этом необходимо учитывать следующее усредненное распределение затрат на изготовление рабочей документации (рис. 1.2).

C, %

Рисунок 1.2 – Ориентировочное распределение затрат на зарплату при создании технических систем

Психологические возможности человека-конструктора, возможности восприятия и оперирования описанием отдельных элементов в процессе их преобразования обусловливает необходимость расчленения представления о проектируемых технических системах на иерархические уровни и блоки. Принцип иерархичности означает структурирование представлений об объектах проектирования по степени детальности описания.

Преимущества такого подхода – сведение задач более сложного уровня к ряду задач малой сложности не вызывает сомнений и поэтому специалистами всего мира применяется ЕСКД (единая система конструкторской документации), которая устанавливает следующую иерархию технической системы типа «объект» машиностроения: детали; сборочные единицы, комплексы, комплекты. По аналогии можно расчленить техническую систему типа «процесс» на операции, процедуры, этапы и стадии.

Создатель технических систем (конструктор) всегда вынужден в достаточной мере знать настоящее (свойства материалов, допуски и посадки, нормативные документы, основные методы расчетов и т.п.) и в тоже время он должен создавать нечто новое, т.е. в достаточной степени обладать научным предвидением.

Логику проектировщика технических систем и ее взаимосвязь с этапами проектирования можно представить следующей таблицей (табл. 1.2).

Таблица 1.2

Логика процесса Основное содержание Этап проектирования
Постановка Задачи Определение потребности создания изделия Расчет ожидаемого эффекта при использовании нового изделия Техническое задание
Определение области исследования Установление показателя эффективности для сравнения вариантов Количественное выражение показателя эффективности Сужение области поиска Выбор решения Анализ информации и принятие решения Формулировка задания (перечень характеристик изделия) Техническое предложение
Формирование новых идей Выработка концепции изделия Эскизный проект
Инженерный анализ, оптимизация Определение показателя эффективности Технический проект
Проверка и анализ результатов проверки Конкретизация решения – разработка технической документации Разработка методов изготовления и технической документации к ним Создание экспериментального образца Рабочая документация
Организация производства Испытания, уточнение документации и принятие решения Серийное изготовление
Оценка эффективности на этапе эксплуатации Эксплуатация изделия Эксплуатация

Стратегия проектирования технической системы зависит от многих факторов: ее сложности, квалификации и количества инженеров-проектировщиков одновременно работающих над одной задачей, сроками выполнения, наличия соответствующих программ и т.п.

Сказанное выше говорит о том, что как этапы процесса проектирования и создания технической системы, так и конструкторские этапы имеют многовариантный характер, что создает предпосылки выбора оптимального решения.

ВАРИАНТЫ ЗАДАНИЙ

Вариант задания студент выбирает по двум последним цифрам зачетной книжки.

№ зачетной книжки Техническая система № зачетной книжки Техническая система
Башенный кран Компьютер
Мостовой кран Ноутбук
Козловой кран Парта
Стреловой кран Стол
Автомобиль Стул
Бульдозер Кресло
Скрепер Тумба
Конвейер Шкаф
Автобетоносмеситель Комбайн
Бензовоз Дверной замок
Автобус Настольная лампа
Микроавтобус Аудиторная доска
Телевизор Тахометр
Магнитофон Часы
Холодильник Гаечный ключ
Микроволновая печь Аккумулятор
Компьютер Насос
Ноутбук Вентилятор
Парта Башенный кран
Стол Мостовой кран
Стул Козловой кран
Кресло Стреловой кран
Тумба Автомобиль
Шкаф Бульдозер
Комбайн Скрепер
Дверной замок Конвейер
Настольная лампа Автобетоносмеситель
Аудиторная доска Бензовоз
Тахометр Автобус
Часы Микроавтобус
Гаечный ключ Телевизор
Аккумулятор Магнитофон
Насос Холодильник
Вентилятор Микроволновая печь
Башенный кран Компьютер
Мостовой кран Ноутбук
Козловой кран Парта
Стреловой кран Стол
Автомобиль Стул
Бульдозер Кресло
Скрепер Тумба
Конвейер Шкаф
Автобетоносмеситель Комбайн
Бензовоз Дверной замок
Автобус Настольная лампа
Микроавтобус Аудиторная доска
Телевизор Тахометр
Магнитофон Часы
Холодильник Гаечный ключ
Микроволновая печь Аккумулятор

Контрольные вопросы:

1. Дайте определение категории «жизненный цикл» технической системы.

2. Что включает в себя структура жизненного цикла?

3. Назовите основные этапы жизненного цикла.

4. Какие типы противоречий возникают в проблемной ситуации?

5. Чем отличаются административные противоречия от технических?

6. На какие виды деятельности может условно разделено техническое творчество?

7. Что такое научно-исследовательское творчество?

8. Что такое проектирование и конструирование?

9. От каких факторов зависит качество проектной документации?

10. Назовите характерное распределение затрат на создание технической системы?


ПРАКТИЧЕСКАЯ РАБОТА

«ПОСТРОЕНИЕ РЯДОВ ТЕХНИЧЕСКИХ СИСТЕМ»

Цель работы: научиться построению рядов технических систем.

Порядок выполнения работы:

1. Дать определения понятиям: параметр, ряд, ряд предпочтительных чисел, модульный ряд, ряд золотого сечения, ряд Фибоначчи.

2. Согласно заданию определить первые десять членов рядов: Фибоначчи, модульного, мультипликационного и предпочтительного.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

Модуль (от лат. modulus - мера) - в архитектуре и строительстве исходная мера, принятая для выражения кратных соотношений размеров комплексов, сооружений и их частей. В качестве модуля принимают меру длины (фут, метр), размер одного из элементов здания или размер строительного изделия. Применение модуля придает комплексам, сооружениям и их частям соизмеримость, облегчает унификацию и стандартизацию строительства.

Принцип (от лат. principium – основа, начало) – основное исходное положение какой-либо системы, теории, мировоззрения, внутренней организации и т.п.

Модульное проектирование предполагает наличие набора конструктивных и функциональных модулей – типоразмерных рядов. При модульном проектировании в основе лежит техническое задание на техническую систему, которая создается путем многочисленных переборов конструктивных модулей (КМ) и функциональных модулей (ФМ). Создание технических систем из уже установленного, экономически обоснованного ряда конструктивных и функциональных модулей позволяет уже на стадии проектирования получить наибольшее снижение стоимости, как проектных работ, так и работ по изготовлению.

Параметр – величина, характеризующая какие-либо свойства технической системы.

Совокупность параметров определяют техническую характеристику системы: производительность, мощность, габаритные размеры и т.п. Последовательность числовых значений такого параметра, в определенном диапазоне его значений, называется параметрическим рядом . Как правило, техническая система характеризуется большим количеством параметров, но можно выделить из них главный параметр (который определяет её функциональное назначение), основные и вспомогательные. Разновидностью параметрического ряда является типоразмерный ряд . Он создается на базе главного параметра, основные параметры которого характеризуют наиболее существенные свойства технической системы, её конструктивно-технологические особенности. Вспомогательные параметры чаще всего носят информационный характер (масса, к.п.д. и т.п.).

Формируя новые технические системы, необходимо исходить из того, что они должны содержать наименьшее число модулей, для обеспечения минимальных затрат на её изготовление и эксплуатацию. Для возможности сборки технической системы необходимо согласовать расположение модуль-узлов как по горизонтали (на одном уровне), так и по вертикали (на других уровнях). Все известные системы согласования параметров базируются на следующих основных принципах: пропорциональности, аддитивности, мультипликативности.

Принцип пропорциональности заключается в том, что основные параметры технической системы пропорциональны одному, считающемуся главным.

Принцип аддитивности (от лат. additivus – прибавляемый, полученный путем сложения) базируется на следующем – параметры Т-системы укладываются в ряд чисел, образуемых путем последовательного сложения.

Принцип мультипликативности (от лат. multiplicus – умножаемый, получаемый путем умножения) заключается в том, что параметры изделия укладываются в ряды чисел, образуемых путем умножения на постоянный множитель.

Метод пропорциональности основан на предположении, что все размеры технической системы связаны друг с другом несколькими функциональными зависимостями. Отсюда – возможность выражать все размеры через главный параметр. Например, для бульдозера можно записать следующие соотношения тягового усилия, веса, параметров отвала через мощность двигателя; для экскаватора - параметры базы, ковша, длины рабочего оборудования и др. через емкость ковша.

Метод относительных размеров применяется в различных вариантах и в различных отраслях. Его недостатком является недостаточная точность и условность применяемых размеров. В настоящее время метод пропорциональности находит широкое применение при выборе параметров простейших технических систем: (болтов, гаек, резцов и т.п.).

Аддитивные системы согласования в конечном итоге используют определенные ряды чисел, наиболее распространенными из которых являются: числа Фибоначчи, золотого сечения, модульные и предпочтительные числа. Теория чисел Фибоначчи (итальянский математик Леонардо Пизанский) была разработана еще в 1202 году. Ряд Фибоначчи – это последовательность чисел, в которой каждый последующий член ряда равен сумме двух предыдущих:

Ряды и их свойства весьма разнообразны и зависят от вида первых двух членов. Наиболее широко используются цельно числовой ряд Фибоначчи: 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144 и т.д. Как видно, значения членов ряда вначале растут медленно, а затем их рост становится стремительным. Например, двенадцатый член ряда а 12 = 377, т.е. во много раз превышает значение первого члена а 1 = 1.

Ряд золотого сечения (золотой ряд) представляет собой последовательность чисел, которая подчиняется закону

Золотое сечение - это такое пропорциональное деление отрезка (рис. 2.1) на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему

a: b = b: c или с: b = b: а.

Рисунок 2.1 - Схема разбиения отрезка по методу золотого сечения

Прямоугольник с таким отношением сторон стали называть золотым прямоугольником. Он также обладает интересными свойствами. Если от него отрезать квадрат, то останется вновь золотой прямоугольник. Этот процесс можно продолжать до бесконечности. А если провести диагональ первого и второго прямоугольника, то точка их пересечения будет принадлежать всем получаемым золотым прямоугольникам.

При создании технических систем в строительстве широко используются модульные системы. В простейшем виде ряд , построенный по модульной системе, представляет ряд, построенный по арифметической прогрессии

где - линейный модуль; - член ряда.

Ряды, построенные на основе зависимости арифметической прогрессии, имеют несколько больше расхождений в числах первых членов ряда и сгущенность в зоне больших величин. Иногда значение линейного модуля .

Чтобы уменьшить количество членов больших значений ряда, могут быть использованы модульные системы ступенчато-арифметической прогрессии: одно-, двух- и даже трехмодульные.

Мультипликационные ряды в основном основаны на использовании закономерностей геометрических прогрессий

где - знаменатель прогрессии; - номер -го члена ряда.

Изменяя значения первого члена ряда и знаменателя прогрессии , можно создать бесчисленное количество числовых рядов. В настоящее время рекомендуются к использованию численные ряды, у которых в качестве знаменателя ряда используется число равное или .

При создании технических систем на протяжении ряда веков используются численные ряды, у которых знаменателем является число равное . Рассматривая вопрос о выборе численных рядов для создания разнообразных технических систем, анализу подвергались ряды, в которых применялись различные значения у корня .

В 1953 году многими странами было принято к использованию международную систему построения числовых рядов. Эти численные ряды получили название рядов предпочтительных чисел (табл. 2.1).

Ряды предпочтительных чисел (РПЧ) представляют собой десятичные ряды геометрической прогрессии вида , т.е. знаменатель ряда , где - номер ряда = 5; 10; 20; 40 и .

Таблица 2.1 - Основные ряды предпочтительных чисел

Основные ряды Номер предпочтительного числа Разность меж-ду числами и расчетными величинами, %
1,00 1,60 2,50 4,00 6,30 10,00 1,00 1,25 1,60 2,00 2,50 3,15 4,00 5,00 6,30 8,00 10,00 1,00 1,25 1,40 1,60 2,00 2,12 2,24 2,50 2,80 3,15 3,55 4,00 4,50 5,00 5,60 6,30 7,10 8,00 9,00 10,00 1,00 1,06 1,12 1,18 1,25 1,32 1,40 1,50 1,60 1,70 1,80 1,90 2,00 2,12 2,24 2,36 2,50 2,65 2,80 3,00 3,15 3,35 3,55 3,75 4,00 4,25 4,50 4,75 5,00 5,30 5,60 6,00 6,30 6,70 7,10 7,50 8,00 8,60 9,00 9,50 10,00 +0,07 -1,18 -0,71 -0,71 -1,01 -0,88 +0,25 +0,95 +1,26 +1,22 +0,87 +0,42 +0,31 +0,06 -0,48 -0,47 -0,49 -0,65 +0,49 -0,39 +0,01 +0,05 -0,22 +0,47 +0,78 +0,74 +0,39 +0,24 -0,17 -0,42 +0,73 -0,15 +0,25 +0,29 +0,01 +0,71 +1,02 +0,98 +0,63

Примечание. Расчетные величины чисел, указанные в таблице, представляют собой величины, вычисленные с точностью до 5-й значащей цифры; при этом погрешность по сравнению с теоретической величиной составляет менее 0,00005

В зависимости от согласования параметров Т-систем необходимо применять тот или иной номер ряда. Например, для назначения главного параметра – емкости ковша одноковшового экскаватора применяется ряд R5, соответственно знаменатель ряда равен и ряд по емкости ковша (м 3) представляет 0,15; 0,25; 0,4; 0,65; 1,1; 1,6; 2,5.

При назначении главного параметра самоходных стреловых кранов (грузоподъемности) также принят ряд R5 и грузоподъемность крана (т) представляет ряд 4; 6; 10; 16; 25; 40; 64; 100; 160; 250 и т.д.

Во многих странах существуют национальные стандарты на ряды предпочтительных чисел (РПЧ). В них внесены замечания по степени округления чисел по тем или иным членам ряда, по соединению некоторых положительных качеств ряда с положительными качествами рядов на основе арифметической прогрессии и др.

ВАРИАНТЫ ЗАДАНИЙ

Студент выбирает вариант задания по последним двум цифрам зачетной книжки (табл. 2.2 и 2.3).

Таблица 2.2 - Варианты заданий для ряда Фибоначчи и модульного ряда

№ зачетной книжки Фибоначчи модульного № зачетной книжки Фибоначчи модульного

Таблица 2.3 - Варианты заданий для мультипликационного и

УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ФИНАНСОВАЯ АКАДЕМИЯ

ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

Кафедра «Информационные технологии»

РЕФЕРАТ

Тема: «Роль экономиста в создании и эксплуатации

Выполнила:

студентка группы У5-3

Научный руководитель:

профессор кафедры «Информационные технологии»

д. э.н., профессор

Москва 2007

Введение.. 3

1. Стадии и этапы разработки информационных систем... 4

1.1. Жизненный цикл информационных систем.. 4

1.2. CASE-технологии проектирования ИС.. 8

1.3. Модели жизненного цикла, применяемые в CASE-технологиях. 8

1.4. Принципы создания и функционирования экономических информационных систем 12

1.5. Требования стандартов по разработке информационных систем.. 12

2. Роль экономиста на различных фазах жизненного цикла информационной системы бухгалтерского учета.. 16

2.1. Предпроектная стадия жизненного цикла. 16

2.2. Проектирование и разработка информационной системы.. 19

2.3. Внедрение информационной системы.. 19

Заключение.. 20

Литература.. 20


Введение

В последние десятилетия эффективность управления и развития бизнеса , других значимых сфер жизнедеятельности человека определяют профессионально-ориентированные корпоративные информационные системы (ИС). Основанные на применении средств электронно-вычислительной техники, телекоммуникационных систем , специализированного программного обеспечения и современных информационных технологий , они позволяют оперативно решать различные прикладные задачи анализа и обработки информации , – как поступающей в реальном масштабе времени, так и больших ее массивов, хранимых в базах, банках и хранилищах данных.

Важное место среди профессионально-ориентированных ИС играют информационные системы бухгалтерского учета (ИС БУ). Примером такой системы, занимающей лидирующее положение в России и ряде зарубежных стран, является программный продукт «1С: Бухгалтерия 8.0», входящей в систему программ «1С: Предприятие 8.0».

Система «1С: Бухгалтерия 8.0» предназначена для автоматизации бухгалтерского и налогового учета, включая подготовку обязательной (регламентированной) отчетности, в организациях, осуществляющих любые виды коммерческой деятельности: оптовую и розничную торговлю, оказание услуг, производство и т. д. Бухгалтерский и налоговый учет ведется в соответствии с действующим законодательством Российской Федерации .

Структурно система «1С: Бухгалтерия 8.0» включает технологическую платформу «1С: Предприятие 8.0» и конфигурацию «Бухгалтерия предприятия». Конфигурация, являясь прикладным решением, определяет правила ведения учета; она должна быть настроена на структуру, профиль и особенности конкретного предприятия. И в этом, прежде всего, роль экономиста в создании и внедрении ИС БУ, хотя, безусловно, проектирование и разработка ИС БУ, осуществляемая фирмой 1С, не может быть реализована без тесного взаимодействия IT-специалистов с профессиональными экономистами, менеджерами, бухгалтерами, аудиторами, экспертами различных управленческих уровней, прежде всего высших и средних.

На этапе эксплуатации ИС БУ главная роль переходит к профессионалам экономического профиля – именно они, в первую очередь представители низшего звена, используют ИС БУ для решения прикладных финансово-экономических задач.

Для уточнения, более полного раскрытия роли экономистов в создании и эксплуатации ИС БУ в коммерческой организации рассмотрим стадии и этапы разработки информационных систем, а затем выполним оценку взаимодействия IT-специалистов и профессионалов-экономистов на различных фазах жизненного цикла ИС БУ.

1. Стадии и этапы разработки информационных систем

1.1. Жизненный цикл информационных систем

Любая ИС создается, эксплуатируется и развивается во времени. Данное утверждение позволяет говорить о жизни, или жизненном цикле ИС, охватывающем все стадии и этапы ее появления, существования и развития – от возникновения потребности в ИС определенного целевого назначения до полного прекращения ее использования вследствие морального старения или потери необходимости решения соответствующих задач.

Жизненный цикл ИС достаточно продолжителен. Создание ИС, как сложных систем, предназначенных для длительной регулярной эксплуатации во многих организациях, характеризуется жестким, строго регламентированным промышленным подходом. К ИС предъявляются особые требования по их эффективности, надежности, помехоустойчивости функционирования, выбору модели хранения данных. Часто ставится задача получения результатов за четко определенное время, не превышающее заданное. Значительное внимание уделяется отладке и тестированию – как отдельных компонент, так и всей ИС в целом. Вводятся элементы дублирования с использованием методов многовариантного программирования, когда одна и та же задача одновременно решается по нескольким алгоритмам и результат определяется при совпадении выходных значений каждого из них. С целью локализации ошибок и нераспространения их влияния устанавливаются программные блоки защиты и восстановления от сбоев и ошибок, вызванных поступлением на обработку недопустимых либо искаженных исходных данных, неисправностью аппаратуры или возможностью реализации в комплексе некорректного интерфейса между какими-то его многочисленными компонентами.

Требования к ИС строго формализуются и фиксируются в техническом задании . Существенное внимание уделяется планированию работ, организации труда в коллективе специалистов, число которых может достигать сотен и тысяч человек, управлению работами и контролю за их выполнением, а также соблюдением заданных программных характеристик. Внедрение в эксплуатацию предваряется проведением многоступенчатых испытаний в специально сформированных или реальных условиях. Обязательной является фаза сопровождения и связанная с этим необходимость подготовки качественной программной документации, тиражирования и передачи ИС в другие эксплуатирующие организации. Общее время жизни ИС может достигать десяти и более лет, из которых 70 – 90% может приходиться на фазы эксплуатации и сопровождения. Длительность эксплуатации может вызвать необходимость модернизации ИС и, соответственно, возврата к ранее пройденным фазам.

В начале 80-х годов прошлого века известный отечественный ученый предложил следующую схему жизненного цикла ИС (рис. 1.1).

Рис. 1.1. Схема жизненного цикла ИС по

После появления потребности и постановки задачи начинается фаза системного анализа. Определяются необходимость в комплексе программ ИС, его назначение и основные функциональные характеристики. Оцениваются трудозатраты, сроки разработки и возможная эффективность применения. Завершается фаза формированием и утверждением технического задания .

Следующей фазой является проектирование . Оно включает разработку структуры ИС и ее компонент, алгоритмизацию, программирование модулей и их отладку, разработку программной документации, а также испытания и внедрение созданной версии программного изделия для регулярной эксплуатации.

Фаза эксплуатации заключается в функционировании ИС для анализа и обработки информации и получения результатов, явившихся целью ее создания, а также в обеспечении достоверности и надежности выдаваемых данных.

Фаза сопровождения состоит в эксплуатационном обслуживании ИС. Осуществляется сбор информации о результатах эксплуатации . При необходимости выполняется тиражирование комплекса программ ИС и программной документации и осуществляется их передача в другие организации. Для устранения ошибок , выявленных в процессе эксплуатации, ИС подвергается доработке или модификации. При возникновении необходимости расширения функций ИС проверяется целесообразность таких операций и при положительном исходе она модернизируется.

В случае, когда модернизация нецелесообразна (экономически не выгодна) или исчезла необходимость в решении задач ИС, ее жизненный цикл завершается прекращением эксплуатации .

Схема жизненного цикла ИС (программного изделия как большого комплекса программ вместе с программной документацией), предложенная, опиралась на принятые в нашей стране, начиная с 1977 года, Государственные стандарты Единой системы программной документации (ГОСТ ЕСПД). Она послужила развитием каскадной модели жизненного цикла , используемой на западе в 70-е – 85-е годы прошлого века при разработке сложных ИС (рис. 1.2). Суть каскадной модели: вся разработка разбивается на несколько этапов. Переход на следующий этап происходит только после полного завершения работ на предыдущем этапе.

Каскадный подход имеет ряд положительных сторон:

    на каждом этапе формируется законченный набор проектной документации , отвечающий критериям полноты и согласованности; выполняемые в логичной последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Рис. 1.2. Схема каскадного подхода к построению ИС

Недостатком каскадного подхода является необходимость предварительного полного и точного формулирования всех требований к характеристикам создаваемой ИС со стороны заказчика, в связи с чем модель ближе отражает реальные процессы, так как предусматривает обратные связи с ранее пройденными этапами.

Устраняя недостатки каскадной модели, в 80-е годы прошлого века на западе была предложена «водопадная » модель (waterfall model) разработки ИС, отражающая реальные процессы (рис. 1.3).

В 86-е – 90-е годы прошлого века получила развитие спиральная модель жизненного цикла ИС (рис. 1.4), в которой основной упор сделан на начальные этапы – анализ и проектирование. Реализуемость технических решений проверяется путем создания прототипов.

Рис. 1.3. «Водопадная» модель разработки ИС

Рис. 1.4. Спиральная модель жизненного цикла ИС

Каждый виток спирали соответствует созданию нового фрагмента или версии ИС, на нем уточняются цели и характеристики проекта, определяется его качество и планируются работы следующего витка спирали. Один виток спирали при этом представляет собой законченный проектный цикл по типу каскадной схемы.

Вторым названием спиральной модели является «продолжающееся проектирование». Позднее, когда в проектный цикл дополнительно стали включать стадии разработки и опробования прототипа системы, она получила название «быстрого прототипирования» (rapid prototyping approach или fast-track).

Применение методов разработки ИС на базе спиральной модели наряду с быстрым эффектом дает снижение управляемости проектом в целом и стыкуемости различных фрагментов ИС. Основная проблема спирального цикла – определение момента перехода на следующий этап. Переход осуществляется в соответствии с планом, даже если не вся запланированная работа закончена. План составляется на основе статистических данных, полученных в предыдущих проектах, и личного опыта разработчиков.

1.2. CASE-технологии проектирования ИС

Возрастающая сложность современных ИС и повышение требовательности к ним обусловливают применение эффективных технологий создания и сопровождения ИС в течение всего жизненного цикла. Такие технологии, базирующиеся на методологиях подготовки ИС и соответствующих комплексах интегрированных инструментальных средств, а также ориентированные на поддержку полного жизненного цикла ИС или ее основных этапов, получили название CASE-технологий и CASE-средств. Для успешной реализации проекта ИС должны быть построены полные и непротиворечивые функциональные и информационные модели системы управления. Накопленный опыт проектирования указанных моделей показывает, что это логически сложная, трудоемкая и длительная по времени работа, требующая высокой квалификации участвующих в ней специалистов. Однако во многих случаях проектирование ИС выполняется в основном на интуитивном уровне с применением неформальных методов, основанных на искусстве, практическом опыте и экспертных оценках. Кроме того, в процессе создания и функционирования ИС информационные потребности пользователей могут изменяться или уточняться, что еще более усложняет разработку и сопровождение ИС. От перечисленных недостатков в наибольшей степени свободны подходы, основанные на программно-технических средствах специального класса – CASE-средствах, реализующих CASE-технологии создания и сопровождения ИС.

Под термином CASE (Computer Aided Software Engineering) понимаются программные средства, поддерживающие процессы создания и сопровождения ИС, включая анализ и формулировку требований, проектирование прикладного программного обеспечения и баз данных , генерацию кода, тестирование, документирование, обеспечение качества, конфигурационное управление и управление проектом, а также другие процессы.

CASE-средства вместе с системным программным обеспечением и техническими средствами образуют полную среду разработки ИС.

1.3. Модели жизненного цикла, применяемые в CASE-технологиях

Применение CASE-технологий опирается на понятия жизненного цикла программного обеспечения ИС. Используются ранее описанные схемы, несколько модифицированные применительно к новым реалиям. Так, например, каскадная модель, усовершенствованная Марри Кантором (2002 г.), предполагает необходимость (рис. 1.5):

· четкого планирования действий по разработке системы;

· планирование работ, связанных с каждым действием;

· применения операций отслеживания хода выполнения действий с контрольными этапами.

Опираясь на результаты разработки крупных IT-проектов и проблемы, которые при этом возникали, М. Кантор поддерживает вывод, сделанный Фредериком Бруксом в книге «Мифический человеко-месяц» (1995 г.) – «в реальном мире, особенно в мире бизнес-систем, каскадная модель не должна применяться», так как требования к таким системам «характеризуются высокой динамикой корректировки и уточнения, невозможностью четкого и однозначного определения до начала работ по реализации».

Рис. 1.5. Каскадная модель жизненного цикла по М. Кантору

Спиральная эволюционная модель, в развитие которой внесли вклад Мартин Фаулер (2004 г.), Скотт Амблер (2004 г.), определяет эволюционную модель как сочетание итеративного и инкрементального подходов – последовательное выполнение итераций и наращивание функциональных возможностей ИС (рис. 1.6).

Скотт Амблер предлагает использовать несколько уровней жизненного цикла, определяемых соответствующим содержанием работ (рис.1.7).

1. Жизненный цикл разработки программного обеспечения – проектная деятельность по разработке и развертыванию программных систем.

2. Жизненный цикл программной системы – включает разработку, развертывание, поддержку и сопровождение.

3. Жизненный цикл информационных технологий (ИТ) – включает всю деятельность ИТ-департамента.

4. Жизненный цикл организации/бизнеса – охватывает всю деятельность организации в целом.

Рис. 1.6. Снижение неопределенности и инкрементальное расширение функциональности при итеративной организация жизненного цикла


Рис.1.7. Содержание четырех категорий жизненного цикла по С. Амблеру

Барри Боэм (1988 г.) связал спиральную модель с рисками , влияющими на организацию жизненного цикла. Он выделил 10 наиболее распространенных (по приоритетам) рисков:

1) дефицит специалистов;

2) нереалистичные сроки и бюджет;

3) реализация несоответствующей функциональности;

4) разработка неправильного пользовательского интерфейса;

5) «золотая сервировка», перфекционизм, ненужная оптимизация и оттачивание деталей;

6) непрекращающийся поток изменений;

7) нехватка информации о внешних компонентах, определяющих окружение системы или вовлеченных в интеграцию;

8) недостатки в работах, выполняемых внешними по отношению к проекту ресурсами;

9) недостаточная производительность получаемой системы;

10) «разрыв» в квалификации специалистов разных областей знаний.

Большая часть рисков связана с организационными и процессными аспектами взаимодействия специалистов в проектной команде.

Модель жизненного цикла Б. Боэма представлена на рис. 1.8.

Рис. 1.8. Оригинальная спиральная модель жизненного цикла разработки ИС по Б. Боэму

1.4. Принципы создания и функционирования экономических информационных систем

Создание экономических ИС (ЭИС) – сложное и трудоемкое дело, требующее значительной подготовки и организации. Эффективность функционирования разработанной ИС в значительной мере зависит от научно-обоснованных методов ее создания.

Выделяют несколько принципов создания и функционирования ЭИС.

1. Принцип системности. Позволяет четко определить цели создания ЭИС и общие свойства, присущие системе как единому целому; выявляет критерии декомпозиции системы и многообразные типы связей между ее элементами.

2. Принцип развития. Предопределяет ЭИС как систему, способную к развитию и совершенствованию при использовании новейших технологий процесса обработки данных.

3. Принцип совместимости. ЭИС строится как открытая система, ориентированная на максимальное использование стандартов программного, технического и иного обеспечения.

4. Принцип непосредственного участия. В процессе обследования и создания ЭИС принимают непосредственное участие работники предприятия (фирмы).

5. Принцип безопасности. Обеспечивается безопасность всех информационных процессов, сохранность и целостность коммерческой информации, циркулируемой в ЭИС.

6. Принцип эффективности. Достижение рационального соотношения между затратами на создание ЭИС и результатами, полученными в процессе ее эксплуатации.

Стандарт 12207 определяет структуру жизненного цикла, содержащую процессы, действия и задачи, которые должны быть выполнены во время создания ИС. Данная структура базируется на трех группах процессов:

    основные процессы жизненного цикла (приобретение, поставка, разработка, эксплуатация, сопровождение); вспомогательные процессы (документирование, управление конфигурацией, обеспечение качества, аттестация, аудит, решение проблем); организационные процессы (управление проектами, создание инфраструктуры проекта, улучшение самого жизненного цикла, обучение).

Стандарт 12207определяет высокоуровневую архитектуру жизненного цикла. Жизненный цикл начинается с идеи или потребности, которую необходимо удовлетворить с использованием программных средств, а может быть и не только их. Архитектура строится как набор процессов и взаимных связей между ними. Например, основные процессы жизненного цикла обращаются к вспомогательным процессам, в то время как организационные процессы действуют на всем протяжении жизненного цикла и связаны с основными процессами.

Дерево процессов жизненного цикла представляет собой структуру декомпозиции жизненного цикла на соответствующие процессы (группы процессов). Декомпозиция процессов строится на основе двух важнейших принципов, определяющих правила разбиения жизненного цикла на составляющие процессы. Эти принципы:

1) Модульность:

    задачи в процессе являются функционально связанными; связь между процессами – минимальна; если функция используется более чем одним процессом, она сама является процессом; если Процесс Y используется Процессом X и только им, значит Процесс Y принадлежит Процессу X (является его частью или его задачей), за исключением случаев потенциального использования Процесса Y в других процессах в будущем.

2) Ответственность:

    каждый процесс находится под ответственностью конкретного лица (управляется и/или контролируется им), определенного для заданного жизненного цикла, например, в виде роли в проектной команде; функция, чьи части находятся в компетенции различных лиц, не может рассматриваться как самостоятельный процесс.

Приобретение (5.1). Процесс (в ГОСТ его называют «Заказ») определяет работы и задачи заказчика, приобретающего программное обеспечение или услуги, связанные с ПО, на основе контрактных отношений. Процесс приобретения состоит из следующих работ (названия ГОСТ 12207 даны в скобках, если предлагают другой перевод названий работ оригинального стандарта):

    инициирование (подготовка); подготовка запроса на предложение (подготовка заявки на подряд); подготовка и корректировка договора; мониторинг поставщика (надзор за поставщиком); приемка и завершение (приемка и закрытие договора).

Поставка (5.2). Процесс определяет работы и задачи поставщика:

    инициирование (подготовка); подготовка предложения (подготовка ответа); разработка контракта (подготовка договора); планирование; выполнение и контроль; проверка и оценка; поставка и завершение (поставка и закрытие договора).

Разработка (5.3). Процесс определяет работы и задачи разработчика:

    определение процесса (подготовка процесса); анализ системных требований (анализ требований к системе); проектирование системы (проектирование системной архитектуры) анализ программных требований (анализ требований к программным средствам); проектирование программной архитектуры; детальное проектирование программной системы (техническое проектирование программных средств); кодирование и тестирование (программирование и тестирование программных средств); интеграция программной системы (сборка программных средств); квалификационные испытания программных средств; интеграция системы в целом (сборка системы); квалификационные испытания системы; установка (ввод в действие); обеспечение приемки программных средств.

Работы могут пересекаться по времени, т. е. проводиться одновременно или с наложением, а также могут предполагать рекурсию и разбиение на итерации.

Эксплуатация (5.4). Процесс определяет работы и задачи оператора службы поддержки:

    определение процесса (подготовка процесса); операционное тестирование (эксплуатационные испытания); эксплуатация системы; поддержка пользователя.

Сопровождение (5.5). Процесс определяет работы и задачи, проводимые специалистами службы сопровождения:

    определение процесса (подготовка процесса); анализ проблем и изменений; внесение изменений; проверка и приемка при сопровождении; миграция (перенос); вывод программной системы из эксплуатации (снятие с эксплуатации).

Стандарт 12207 не определяет последовательность и разбиение выполнения процессов во времени, адресуя этот вопрос по адаптации стандарта к конкретным условиям, окружению и применению выбранных моделей, практик, техник и т. п.

Таким образом, в настоящее время регламентирован процесс разработки ИС: определены фазы жизненного цикла, стадии и этапы разработки ИС, предусмотрена совместная деятельность IT-специалистов – разработчиков ИС и профессионалов-экономистов.

2. Роль экономиста на различных фазах жизненного цикла информационной системы бухгалтерского учета

2.1. Предпроектная стадия жизненного цикла

Проведенный анализ применяемых моделей жизненного цикла показывает наличие многовариантности описания процесса проектирования, разработки, эксплуатации и сопровождения ИС. В связи с этим для оценки роли экономистов на различных стадиях и этапах ИС БУ воспользуемся схемой, предложенной проф.

Выделяются три стадии жизненного цикла ИС – предпроектная , проектирование и разработка и внедрение . Стадии состоят из этапов, на каждом из которых оценивается роль экономистов различных управленческих звеньев и консультантов-экспертов (рис. 2.1).

Предпроектная стадия предшествует работам по созданию ИС.

Рис. 2.1. Роль и место специалистов-экономистов на стадиях жизненного цикла ИС

На этой стадии значительной является роль экономистов-управленцев высшего звена (++++). Именно они принимают решение о необходимости автоматизации информационных процессов предприятия и разработки ИС в связи с невозможностью эффективной обработки все возрастающих массивов информации традиционными способами. Однако значимой является роль и экономистов-консультантов, выступающих экспертами (+++). Требуется выполнить всестороннее системное аналитическое исследование предметной области:

    уяснить общие цели и структуру предприятия как исследуемой системы, проблематику решаемых задач, характер информационных процессов; определить перечень задач структурных подразделений системы, установить общие закономерности и особенности управляющих воздействий и потоков информации между ними и внешней средой; изучить сущность и традиционные технологии решения конкретных задач, определить источники и потребители информации для каждой из задач; определить объемы потоков информации, их изменчивость, распределение во времени, формы представления входных и выходных данных; оценить возможности автоматизации процессов хранения и обработки данных; выбрать модель хранения данных в базе или хранилище данных; определить программно-технические средства обеспечения разработки автоматизированной ИС и защиты информации и информационных потоков; определить возможные способы и средства автоматизированного решения прикладных задач; выполнить предварительную оценку предполагаемых финансово-экономических и материальных затрат и людских ресурсов для создания ИС; дать прогноз о сроках разработки ИС.

По результатам системного анализа исследуемой предметной области при наличии положительных оценок эффекта от перевода к автоматизированному решению задач разрабатывается технико-экономическое обоснование (ТЭО) и принимается окончательное решение на проектирование ИС и разработку технического задания (ТЗ). Эффект от перевода считается положительным, если в результате достигается хотя бы один из факторов: экономия денежных затрат, сокращение времени решения задач, повышение качества решения или улучшение условий труда.

От тщательности действий на предпроектной стадии при разработке ТЗ, согласованности исполнителей – привлеченных IT-специалистов, которым поручена разработка ИС, и экономистов, достоверности полученных оценок, обоснованности решений, представленных утверждение руководителю, во многом зависит будущая эффективность применения ИС БУ. Действия экономистов здесь оцениваются достаточно высоко: управленцы высшего звена – (++), среднего звена – (+++), низшего звена – (+), консультанты-эксперты – (+++).

2.2. Проектирование и разработка информационной системы

На данной стадии основная роль принадлежит IT-специалистам, выполняющим разработку ИС. Однако, как при разработке технического, так и рабочего проектов, важным является участие экономистов.

Специалисты-экономисты низшего и среднего звеньев контактируют с IT-специалистами, раскрывая им особенности решения экономических задач , применения справочно-нормативных документов, указывая на формы финансово-экономической отчетности, объемы электронного документооборота, выступая консультантами и оценщиками на этапах отладки и тестирования ИС. Например, бухгалтеры на этапе создания ИС БУ могут оценить правильность расчета заработной платы специалистам предприятия в соответствие с действующими нормативными документами, тарифными разрядами, должностными окладами , надбавками, премиальными, нахождением в отпуске, на больничном и т. п.

Кроме того, специалисты-экономисты на этой стадии знакомятся с проектом эксплуатационной документации, разрабатываемой на ИС, и высказывают свои предложения и замечания.

Высшая оценка на стадии проектирования иразработки ИС у экономистов среднего звена – (+++), далее идут экономисты низшего звена – (++), затем высшего – (+).

Оценка консультантов-экспертов незначительна – (+- –).

2.3. Внедрение информационной системы

На этапе внедрения ИС выполняются приемо-сдаточные испытания ИС, затем – опытная и промышленная эксплуатация. В состав комиссий по выполнению указанных работ включаются наиболее подготовленные специалисты-экономисты различных звеньев управления. Выполняется тщательная проверка функционирования подсистем ИС – с тестовыми, специально подобранными, а затем и реальными данными. Оцениваются возможности и характеристики ИС с требованиями, заявленными в ТЗ.

До ввода ИС в промышленную эксплуатацию процесс может занимать от нескольких недель до нескольких месяцев, а то и года. Каждый этап стадии завершается подписанием акта приемки.

На стадии внедрения ИС особенно велика роль экономистов. Деятельность специалистов высшего звена оценивается в ходе приемо-сдаточных испытаний высшим баллом – (++++), в ходе опытной и промышленной эксплуатации – (+). Специалисты среднего звена и консультанты-эксперты в ходе приемо-сдаточных испытаний имеют оценку (+++), специалисты низшего звена – (+). На этапах опытной и промышленной эксплуатации выше роль специалистов низшего звена – (+++); оценка специалистов среднего звена – (++); роль экспертов-консультантов незначительна – (+-–).

Таким образом, на всех стадиях и этапах жизненного цикла ИС существенной является роль экономистов различных звеньев управления.

Заключение

Жизненный цикл информационных систем бухгалтерского учета может быть представлен различными моделями жизненного цикла. На различных стадиях и этапах жизненного цикла ИС БУ существенной является роль специалистов-экономистов.

Экономисты высшего звена управления играют решающую роль на ключевых этапах – принятии решения о создании ИС и приемке ее в эксплуатацию.

Роль экономистов среднего звена существенна на всех стадиях и этапах жизненного цикла ИС, решение о создании которой принято.

Роль специалистов низшего звена возрастает в ходе эксплуатации ИС, а значение экспертов неоценимо на предпроектной стадии и проведении приемо-сдаточных испытаний.

Литература

1. Экономическая информатика: Учебник / Под ред. . -2-е изд. –М.: Финансы и статистика, 2004. – 592 с.

2. Воройский. Энциклопедический систематизированный словарь-справочник. (Введение в современные информационные и телекоммуникационные технологии в терминах и фактах). - М.: 2007.

3. Липаев программного обеспечения. –М.: Финансы и статистика, 19 с.

4. Лобанова Т. Жизненный цикл информационных систем – выберем стандарты, выстроим методологию. – В журн. Оборудование, сентябрь, 2005. с.

5. Орлик С. Введение в программную инженерию и управление жизненным циклом ПО. –М.: 2005. sorlik.

6. Харитонов лекций. –М.: 2006 – 2007.

7. Чистов к дисциплине «Информационные системы в экономике». –М.: 2006.

ISO - International Organization of Standardization - Международная организация по стандартизации, IEC - International Electro technical Commission - Международная комиссия по

цикла (ЖЦ).

ЖЦИС - это период создания и использования ИС, начиная с момента возникновения потребности в ИС и заканчивая моментом полного её выхода из эксплуатации.

ЖЦ является моделью создания и использования ПО , отражающей его различные состояния, начиная с момента возникновения необходимости в данном программном изделии и заканчивая моментом его полного выхода из употребления у всех пользователей.

Традиционно выделяются следующие основные этапы ЖЦ ПО :

  • анализ требований;
  • проектирование;
  • кодирование (программирование);
  • тестирование и отладка;
  • эксплуатация и сопровождение.

Стадии жизненного цикла информационной системы

  1. Предпроектное обследование
    • 1.1. Сбор материалов для проектирования; при этом выделяют формулирование требований, изучение объекта автоматизации, даются предварительные выводы предпроектного варианта ИС.
    • 1.2. Анализ материалов и разработка документации; обязательно даётся технико-экономическое обоснование с техническим заданием на проектирование ИС .
  2. Проектирование
    • 2.1. Предварительное проектирование:
      • выбор проектных решений по аспектам разработки ИС;
      • описание реальных компонент ИС;
      • оформление и утверждение технического проекта (ТП).
    • 2.2. Детальное проектирование:
      • выбор или разработка математических методов или алгоритмов программ;
      • корректировка структур БД;
      • создание документации на доставку и установку программных продуктов;
      • выбор комплекса технических средств с документацией на её установку.
    • 2.3. Разработка техно-рабочего проекта ИС (ТРП).
    • 2.4. Разработка методологии реализации функций управления с помощью ИС и описанием регламента действий аппарата управления.
  3. Разработка ИС
    • получение и установка технических и программных средств;
    • тестирование и доводка программного комплекса;
    • разработка инструкций по эксплуатации программно-технических средств.
  4. Ввод ИС в эксплуатацию
    • ввод технических средств;
    • ввод программных средств;
    • обучение и сертификация персонала;
    • опытная эксплуатация;
    • сдача и подписание актов приёмки-сдачи работ.
  5. Эксплуатация ИС
    • повседневная эксплуатация;
    • общее сопровождение всего проекта.

ЖЦ образуется в соответствии с принципом нисходящего проектирования и, как правило, носит итерационный характер: реализованные этапы, начиная с самых ранних, циклически повторяются в соответствии с изменениями требований и внешних условий, введением ограничений и т.п. На каждом этапе ЖЦ порождается определённый набор документов и технических решений; при этом для каждого этапа исходными являются документы и решения, полученные на предыдущем этапе. Каждый этап завершается верификацией порождённых документов и решений с целью проверки их соответствия исходным.

Основным нормативным документом, регламентирующим ЖЦ ПО, является международный стандарт ISO/IEC 12207 (ISO - International Organization of Standardization - Международная организация по стандартизации, IEC - International Electrotechnical Commission - Международная комиссия по электротехнике). Он определяет структуру ЖЦ, содержащую процессы, действия и задачи, которые должны быть выполнены во время создания ПО.

Структура ЖЦ ПО по стандарту ISO/IEC 12207 базируется на трёх группах процессов:

  • основные процессы ЖЦ ПО (приобретение, поставка, разработка, эксплуатация, сопровождение);
  • вспомогательные процессы, обеспечивающие выполнение основных процессов (документирование, управление конфигурацией, обеспечение качества, верификация, аттестация, оценка, аудит, решение проблем);
  • организационные процессы (управление проектами, создание инфраструктуры проекта, определение, оценка и улучшение самого ЖЦ, обучение).

Разработка включает в себя все работы по созданию ПО и его компонент в соответствии с заданными требованиями. Сюда включается оформление проектной и эксплуатационной документации, подготовка материалов, необходимых для проверки работоспособности и соответствующего качества программных продуктов , материалов, необходимых для организации обучения персонала и т.д. Разработка ПО включает в себя, как правило, анализ, проектирование и реализацию (программирование).

Эксплуатация включает в себя работы по внедрению компонентов ПО в эксплуатацию. В этот процесс входит конфигурирование базы данных и рабочих мест пользователей, обеспечение эксплуатационной документацией, проведение обучения персонала и т.д., и непосредственно эксплуатацию, в том числе локализацию проблем и устранение причин их возникновения, модификацию ПО в рамках установленного регламента, подготовку предложений по совершенствованию, развитию и модернизации системы.

Управление проектом связано с вопросами планирования и организации работ, создания коллективов разработчиков и контроля за сроками и качеством выполняемых работ. Техническое и организационное обеспечение проекта включает выбор методов и инструментальных средств для реализации проекта, определение методов описания промежуточных состояний разработки, разработку методов и средств испытаний ПО, обучение персонала и т.п. Обеспечение качества проекта связано с проблемами верификации, проверки и тестирования ПО.

Верификация - это процесс определения того, отвечает ли текущее состояние разработки, достигнутое на данном этапе, требованиям этого этапа. Проверка позволяет оценить соответствие параметров разработки с исходными требованиями. Проверка частично совпадает с тестированием, которое связано с идентификацией различий между действительными и ожидаемыми результатами и оценкой соответствия характеристик ПО исходным требованиям. В процессе реализации проекта важное место занимают вопросы идентификации, описания и контроля конфигурации отдельных компонентов и всей системы в целом.

Управление конфигурацией является одним из вспомогательных процессов, поддерживающих основные процессы жизненного цикла ПО, прежде всего, процессы разработки и сопровождения ПО. При создании проектов сложных ИС, состоящих из многих компонентов, каждый из которых может иметь разновидности или версии, возникает проблема учёта их связей и функций, создания унифицированной структуры и обеспечения развития всей системы. Управление конфигурацией позволяет организовать, систематически учитывать и контролировать внесение изменений в ПО на всех стадиях ЖЦ. Общие принципы и рекомендации конфигурационного учёта, планирования и управления конфигурациями ПО отражены в проекте стандарта ISO 12207-2.

Каждый процесс характеризуется определёнными задачами и методами их решения, исходными данными, полученными на предыдущем этапе, и результатами. Результатами анализа, в частности, являются функциональные модели, информационные модели и соответствующие им диаграммы. ЖЦ ПО носит итерационный характер: результаты очередного этапа часто вызывают изменения в проектных решениях, выработанных на более ранних этапах.

Из рабочей учебной программы:

Тема 2. Стандарты и нормативные руководства по системной и программной инженерии.

Стандарт ISO/IEC 15288 «Системная инженерия - процессы жизненного цикла систем".

ГОСТ 34: Комплекс стандартов на автоматизированные системы.

Ключевые идеи системной инженерии: системный подход, жизненный цикл системы, инжиниринг требований, архитектурный дизайн, процессный подход, проектный подход.

2.1. Стандарт ISO 15288 «Системная инженерия - процессы жизненного цикла систем".

2.2. Жизненный цикл системы.

2.3. Представления жизненного цикла системы.

2.4. Жизненный цикл информационной системы

2.5. Модели жизненного цикла

2.6. Выбор модели жизненного цикла

2.1. Стандарт iso 15288 «системная инженерия - процессы жизненного цикла систем".

Системная инженерия применяется для решения проблем, связанных с ростом сложности рукотворных систем. Стандарт ISO 15288, описывающий методы системной инженерии, предписывает иметь описание жизненного цикла системы и его практик. Такое описание требуется для успешного продвижения системы по жизненному циклу. Но стандарт не указывает на методы, с помощью которых требуется создавать подобное описание.

Задачи стандарта:

    Дать возможность организациям (внешним и внутренним контракторам) договориться о совмещении замыслов, процессов проектирования, создания, эксплуатации и вывода из эксплуатации самых разных рукотворных систем – от зубочисток до атомных станций, от систем стандартизации до корпораций

    Внедрить в практику организации ряд ключевых идей системной инженерии:

    • системного подхода

      жизненного цикла

      инжиниринга требований

      архитектурного дизайна

      процессного подхода

      проектного подхода

      культуры контрактации

Ис т ория создания

    Совместная разработка ISOиIEC, активное участиеINCOSE

    Начало работ в 1996, версии в 2002, 2005 (ГОСТ Р ИСО/МЭК 15288-2005), 2008

    Призван гармонизировать так называемое «болото стандартов» системной инженерии (многочисленные стандарты, принятые различными военными ведомствами, государствами, отраслевыми организациями стандартизации)

К разработке стандарта были привлечены специалисты различных областей: системной инженерии, программирования, управления качеством, человеческими ресурсами, безопасностью и пр. Был учтен практический опыт создания систем в правительственных, коммерческих, военных и академических организациях. Стандарт применим для широкого класса систем, но его основное предназначение - поддержка создания компьютеризированных систем.

2.2. Жизненный цикл системы

Аббревиатура русск: ЖЦ

Аббревиатура англ: LC (Life Cycle )

Русский: «жизненный цикл» . Английское life cycle в технике ранее означало и переводилось как «срок службы», и иногда даже «срок службы до первого капитального ремонта». «Жизненный цикл» -- это относительно новый перевод. Иногда «цикл» переводят как «период», но такой перевод не устоялся (хотя он и точнее в данном случае: «период жизни» системы). Слово «цикл» не должно смущать – ничего циклического в жизненном цикле нет. Слово «цикл» имеет смысл «типичности», говоря о том, что то же самое происходит и с другими системами.

Формально: жизненный цикл – это смена состояний системы (эволюция системы) в период времени от замысла до прекращения её существования.

Система и жизненный цикл -- близнецы-братья. Мы говорим система -- подразумеваем жизненный цикл, мы говорим жизненный цикл -- подразумеваем система.

Определения.

    Определение стандарта ISO/IEC 15288:2008 (Определение: life cycle -- evolution of a system, product, service, project or other human-made entity from conception through retirement (ISO 15288, 4.11):

жизненный цикл (ЖЦ) – это эволюция системы, продукции, услуги, проекта или иного рукотворного объекта от замысла до прекращения использования.

    Определение стандарта ISO 15704 (Industrial automation systems - Requirements for enterprise-reference architectures and methodologies Системы промышленной автоматизации. Требования к архитектуре эталонных предприятий и методологии. Описывает эталонную архитектуру предприятия и средства реализации проектов в рамках полнрго жизненного цикла предприятия):

жизненный цикл (ЖЦ) – это конечный набор основных фаз и шагов, которые система проходит на протяжении всей истории существования.

Каждая система, вне зависимости от ее вида и масштаба, проходит весь свой жизненный цикл согласно некоторому описанию. Продвижение системы по частям этого описания и есть жизненный цикл системы. Описание жизненного цикла, таким образом, - это концептуальная сегментация по стадиям , способствующим планированию, разворачиванию, эксплуатации и поддержке целевой системы.

Стадии (табл. 2.1) представляют наиболее крупные периоды жизненного цикла, ассоциируемые с системой, и соотносятся с состояниями описания системы или реализацией системы как набора продуктов или услуг. Стадии описывают основные контрольные точки продвижения и успехов системы по ходу жизненного цикла. Такие сегменты дают упорядоченное продвижение системы через установленные пересмотры выделения ресурсов, что снижает риски и обеспечивает удовлетворительное продвижение. Основной причиной применения описаний жизненного цикла является потребность в принятии решений по определенным критериям до продвижения системы на следующую стадию.

Таблица 2.1

Стадии создания систем (ISO/IEC 15288)

п./п

Стадия

Описание

Формирование концепции

Анализ потребностей, выбор концепции и проектных решений

Разработка

Проектирование системы

Реализация

Изготовление системы

Эксплуатация

Ввод в эксплуатацию и использование системы

Поддержка

Обеспечение функционирования системы

Снятие с эксплуатации

Прекращение использования, демонтаж, архивирование системы